Matching Items (186)
171718-Thumbnail Image.png
Description
Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites

Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites for cracks. As surface conditions are not always satisfactory, particularly for additively manufactured components, it is necessary to develop a reliable model for fatigue life estimation considering surface roughness effects and assure structural integrity. This research study focuses on extending a previously developed subcycle fatigue crack growth model to include the effects of surface roughness. Unlike other models that consider surface irregularities as series of cracks, the proposed model is unique in the way that it treats the peaks and valleys of surface texture as a single equivalent notch. First, an equivalent stress concentration factor for the roughness was estimated and introduced into an asymptotic interpolation method for notches. Later, a concept called equivalent initial flaw size was incorporated along with linear elastic fracture mechanics to predict the fatigue life of Ti-6Al-4V alloy with different levels of roughness under uniaxial and multiaxial loading conditions. The predicted results were validated using the available literature data. The developed model can also handle variable amplitude loading conditions, which is suggested for future work.
ContributorsKethamukkala, Kaushik (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
171825-Thumbnail Image.png
Description
High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive

High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive manufacturing processes, due to variation of thermal gradient and cooling rates, and afterward during different thermomechanical loads, which parts experience in their specific applications, could also impact its mechanical properties both at room and high temperatures. In this study, an in-depth analysis of how different microstructural features, such as crystallographic texture, grain size, grain boundary misorientation angles, and inherent defects, as byproducts of electron beam powder bed fusion (EB-PBF) AM process, impact its anisotropic mechanical behaviors and softening behaviors due to interacting mechanisms. Mechanical testing is conducted for EB-PBF Ti6Al4V parts made at different build orientations up to 600°C temperature. Microstructural analysis using electron backscattered diffraction (EBSD) is conducted on samples before and after mechanical testing to understand the interacting impact that temperature and mechanical load have on the activation of certain mechanisms. The vertical samples showed larger grain sizes, with an average of 6.6 µm, a lower average misorientation angle, and subsequently lower strength values than the other two horizontal samples. Among the three strong preferred grain orientations of the α phases, <1 1 2 ̅ 1> and <1 1 2 ̅ 0> were dominant in horizontally built samples, whereas the <0 0 0 1> was dominant in vertically built samples. Thus, strong microstructural variation, as observed among different EB-PBF Ti6Al4V samples, mainly resulted in anisotropic behaviors. Furthermore, alpha grain showed a significant increase in average grain size for all samples with the increasing test temperature, especially from 400°C to 600°C, indicating grain growth and coarsening as potential softening mechanisms along with temperature-induced possible dislocation motion. The severity of internal and external defects on fatigue strength has been evaluated non-destructively using quantitative methods, i.e., Murakami’s square root of area parameter model and Basquin’s model, and the external surface defects were rendered to be more critical as potential crack initiation sites.
ContributorsMian, Md Jamal (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Shuaib, Abdelrahman (Committee member) / Mobasher, Barzin (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
171838-Thumbnail Image.png
Description
Sequential event prediction or sequential pattern mining is a well-studied topic in the literature. There are a lot of real-world scenarios where the data is released sequentially. People believe that there exist repetitive patterns of event sequences so that the future events can be predicted. For example, many companies build

Sequential event prediction or sequential pattern mining is a well-studied topic in the literature. There are a lot of real-world scenarios where the data is released sequentially. People believe that there exist repetitive patterns of event sequences so that the future events can be predicted. For example, many companies build their recommender system to predict the next possible product for the users according to their purchase history. The healthcare system discovers the relationships among patients’ sequential symptoms to mitigate the adverse effect of a treatment (drugs or surgery). Modern engineering systems like aviation/distributed computing/energy systems diagnosed failure event logs and took prompt actions to avoid disaster when a similar failure pattern occurs. In this dissertation, I specifically focus on building a scalable algorithm for event prediction and extraction in the aviation domain. Understanding the accident event is always the major concern of the safety issue in the aviation system. A flight accident is often caused by a sequence of failure events. Accurate modeling of the failure event sequence and how it leads to the final accident is important for aviation safety. This work aims to study the relationship of the failure event sequence and evaluate the risk of the final accident according to these failure events. There are three major challenges I am trying to deal with. (1) Modeling Sequential Events with Hierarchical Structure: I aim to improve the prediction accuracy by taking advantage of the multi-level or hierarchical representation of these rare events. Specifically, I proposed to build a sequential Encoder-Decoder framework with a hierarchical embedding representation of the events. (2) Lack of high-quality and consistent event log data: In order to acquire more accurate event data from aviation accident reports, I convert the problem into a multi-label classification. An attention-based Bidirectional Encoder Representations from Transformers model is developed to achieve good performance and interpretability. (3) Ontology-based event extraction: In order to extract detailed events, I proposed to solve the problem as a hierarchical classification task. I improve the model performance by incorporating event ontology. By solving these three challenges, I provide a framework to extract events from narrative reports and estimate the risk level of aviation accidents through event sequence modeling.
ContributorsZhao, Xinyu (Author) / Yan, Hao (Thesis advisor) / Liu, Yongming (Committee member) / Ju, Feng (Committee member) / Iquebal, Ashif (Committee member) / Arizona State University (Publisher)
Created2022
168485-Thumbnail Image.png
Description
In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs)

In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs) in surface waters and drinking water systems. This study focuses on the treatment of emerging chemical contaminants including nitrosodimethylamine (NDMA) and 1,4-dioxane. In addition, the inactivation of microbial contaminants of concern in water including E. coli, Legionella, Mycobacterium and fungal spores were studied using the same treatment technologies. The ECs chosen are not susceptible to conventional treatment process and there still remains a need for alternate processes for their removing/remediating to ensure safe drinking water. The treatment technologies utilized were Advanced Oxidation Processes (AOP) involving UV 220 /254 nm employing an excimer lamp and a low-pressure mercury lamp with ReFLeXTM technology and peracetic acid (PAA). The main objective of this study was to develop a new alternate technology for the enhanced remediation of chemical and microorganisms of concerns in water. The specific research objectives included: 1) To study the efficacy of the UV system to treat the selected contaminants. 2) To study the effect of PAA on the remediation of the contaminants. 3) To explore a new AOP technology under dynamic flow conditions with varying UV and PAA doses. 4) To determine optimized UV and PAA dosages to obtain enhanced remediation of the selected contaminant under dynamic flow conditions to better mimic the real-world applications.
ContributorsNatekar, Sunny Anand (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Diefenthal, George (Committee member) / Arizona State University (Publisher)
Created2021
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
168355-Thumbnail Image.png
Description
Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to

Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to the hierarchical uncertainties associated with their complex microstructure at different length scales. Such uncertainties also exist in disordered hyperuniform systems that are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. An explicit mixture random field (MRF) model is proposed to characterize and reconstruct multi-phase stochastic material property and microstructure simultaneously, where no additional tuning step nor iteration is needed compared with other stochastic optimization approaches such as the simulated annealing. The proposed method is shown to have ultra-high computational efficiency and only requires minimal imaging and property input data. Considering microscale uncertainties, the material reliability will face the challenge of high dimensionality. To deal with the so-called “curse of dimensionality”, efficient material reliability analysis methods are developed. Then, the explicit hierarchical uncertainty quantification model and efficient material reliability solvers are applied to reliability-based topology optimization to pursue the lightweight under reliability constraint defined based on structural mechanical responses. Efficient and accurate methods for high-resolution microstructure and hyperuniform microstructure reconstruction, high-dimensional material reliability analysis, and reliability-based topology optimization are developed. The proposed framework can be readily incorporated into ICME for probabilistic analysis, discovery of novel disordered hyperuniform materials, material design and optimization.
ContributorsGao, Yi (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Pan, Rong (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2021
168516-Thumbnail Image.png
Description
Advanced Polymer and Ceramic Matrix Composites (PMCs and CMCs) are currently employed in a variety of airframe and engine applications. This includes PMC jet engine fan cases and CMC hot gas path turbine components. In an impact event, such as a jet engine fan blade-out, PMCs exhibit significant deformation-induced temperature

Advanced Polymer and Ceramic Matrix Composites (PMCs and CMCs) are currently employed in a variety of airframe and engine applications. This includes PMC jet engine fan cases and CMC hot gas path turbine components. In an impact event, such as a jet engine fan blade-out, PMCs exhibit significant deformation-induced temperature rises in addition to strain rate, temperature, and pressure dependence. CMC turbine components experience elevated temperatures, large thermal gradients, and sustained loading for long time periods in service, where creep is a major issue. However, the complex nature of woven and braided composites presents significant challenges for deformation, progressive damage, and failure prediction, particularly under extreme service conditions where global response is heavily driven by competing time and temperature dependent phenomena at the constituent level. In service, the constituents in these advanced composites experience history-dependent inelastic deformation, progressive damage, and failure, which drive global nonlinear constitutive behavior. In the case of PMCs, deformation-induced heating under impact conditions is heavily influenced by the matrix. The creep behavior of CMCs is a complex manifestation of time-dependent load transfer due to the differing creep rates of the constituents; simultaneous creep and relaxation at the constituent level govern macroscopic CMC creep. The disparity in length scales associated with the constituent materials, woven and braided tow architectures, and composite structural components therefore necessitates the development of robust multiscale computational tools. In this work, multiscale computational tools are developed to gain insight into the deformation, progressive damage, and failure of advanced PMCs and CMCs. This includes multiscale modeling of the impact response of PMCs, including adiabatic heating due to the conversion of plastic work to heat at the constituent level, as well as elevated temperature creep in CMCs as a result of time-dependent constituent load transfer. It is expected that the developed models and methods will provide valuable insight into the challenges associated with the design and certification of these advanced material systems.
ContributorsSorini, Christopher (Author) / Chattopadhyay, Adit (Thesis advisor) / Goldberg, Robert K (Committee member) / Liu, Yongming (Committee member) / Mignolet, Marc (Committee member) / Yekani-Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2021
161986-Thumbnail Image.png
Description
Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents

Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents at the atomistic length scale play a more critical role with nanoengineered composites. Therefore, it is desirable to link composite behavior to specific microscopic constituent properties explicitly and lower length scale features using high-fidelity multiscale modeling techniques.In the research presented in this dissertation, an atomistically-informed multiscale modeling framework is developed to investigate damage evolution and failure in composites with radially-grown carbon nanotube (CNT) architecture. A continuum damage mechanics (CDM) model for the radially-grown CNT interphase region is developed with evolution equations derived using atomistic simulations. The developed model is integrated within a high-fidelity generalized method of cells (HFGMC) micromechanics theory and is used to parametrically investigate the influence of various input micro and nanoscale parameters on the mechanical properties, such as elastic stiffness, strength, and toughness. In addition, the inter-fiber stresses and the onset of damage in the presence of the interphase region are investigated to better understand the energy dissipation mechanisms that attribute to the enhancement in the macroscopic out-of-plane strength and toughness. Note that the HFGMC theory relies heavily on the description of microscale features and requires many internal variables, leading to high computational costs. Therefore, a novel reduced-order model (ROM) is also developed to surrogate full-field nonlinear HFGMC simulations and decrease the computational time and memory requirements of concurrent multiscale simulations significantly. The accurate prediction of composite sandwich materials' thermal stability and durability remains a challenge due to the variability of thermal-related material coefficients at different temperatures and the extensive use of bonded fittings. Consequently, the dissertation also investigates the thermomechanical performance of a complex composite sandwich space structure subject to thermal cycling. Computational finite element (FE) simulations are used to investigate the intrinsic failure mechanisms and damage precursors in honeycomb core composite sandwich structures with adhesively bonded fittings.
ContributorsVenkatesan, Karthik Rajan (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Yekani Fard, Masoud (Committee member) / Stoumbos, Tom (Committee member) / Arizona State University (Publisher)
Created2021
161990-Thumbnail Image.png
Description
The ongoing COVID pandemic has opened the doors for the development of effective surface disinfection technologies. UV technology is one of the most effective technique to be used in combination with different photocatalytic agents such as Titanium Dioxide (TiO2) for microbial inactivation. There are many bacteria and viruses which have

The ongoing COVID pandemic has opened the doors for the development of effective surface disinfection technologies. UV technology is one of the most effective technique to be used in combination with different photocatalytic agents such as Titanium Dioxide (TiO2) for microbial inactivation. There are many bacteria and viruses which have the potential to infect humans via surface-oral/inhalation pathway. Thus, it is important to evaluate the effectiveness of these techniques used to inactivate microorganisms to minimize environmental transmission. UV light directly acts on bacteria and viruses by damaging their nucleic acids and protein structures. TiO2 acts as a photocatalyst, generates hydroxyl radicals under UV, leading to enhanced inactivation efficacy. This study focuses on the impact of UVC light at 254 nm wavelength in combination with spray formulations with TiO2 for the inactivation of E. coli (exposure times of 1, 5 and 10 minutes) and bacteriophages P22 (exposure times of 5 and 10 minutes) and MS2 (exposure times of 1 and 5 minutes). This study includes tests that explored the long-lasting impact of spray formulations on non-porous surface. Minimal inactivation of ~ 0.15 log inactivation of E. coli was resulted using TiO¬2 alone but when UV was added to the procedure on average 3 log inactivation was achieved. It was noted that MS2 was found to be more susceptible to UV as compared to P22 due to its higher inactivation rate. The spray formulation homogeneity is a critical factor in consistent microbial inactivation. In addition, the UV intensity of the handheld device is an important factor for total disinfection. However, the combined spray formulation and UV technology is an effective method of surface disinfection.
ContributorsBaxi, Dhatri Kamleshbhai (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2021
161992-Thumbnail Image.png
Description
Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial

Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial and multiaxial states of loading including damage and failure predictions. Obtaining this information from (laboratory) experimental testing is costly, time consuming, and sometimes, impractical. On the other hand, numerical modeling of composite materials provides a tool (virtual testing) that can be used as a supplemental and an alternate procedure to obtain data that either cannot be readily obtained via experiments or is not possible with the currently available experimental setup. In this study, a unidirectional composite (Toray T800-F3900) is modeled at the constituent level using repeated unit cells (RUC) so as to obtain homogenized response all the way from the unloaded state up until failure (defined as complete loss of load carrying capacity). The RUC-based model is first calibrated and validated against the principal material direction laboratory tests involving unidirectional loading states. Subsequently, the models are subjected to multi-directional states of loading to generate a point cloud failure data under in-plane and out-of-plane biaxial loading conditions. Failure surfaces thus generated are plotted and compared against analytical failure theories. Results indicate that the developed process and framework can be used to generate a reliable failure prediction procedure that can possibly be used for a variety of composite systems.
ContributorsKatusele, Daniel Mutahwa (Author) / Rajan, Subramaniam (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021