Matching Items (267)
136019-Thumbnail Image.png
Description
In recent years, products advertised to contain nanosilver have become increasingly popular; however, while companies often advertise for nanosilver products, little regulation occurs to verify that these products actually contain silver nanoparticles. Furthermore, there currently exists much dispute regarding the safety and toxicity of silver nanoparticles. As more and more

In recent years, products advertised to contain nanosilver have become increasingly popular; however, while companies often advertise for nanosilver products, little regulation occurs to verify that these products actually contain silver nanoparticles. Furthermore, there currently exists much dispute regarding the safety and toxicity of silver nanoparticles. As more and more products incorporate nanosilver, the resolution of this dispute proves progressively important. The present study addressed these issues, with goals to synthesize silver nanoparticles, determine the solubility of the synthesized silver nanoparticles, and to evaluate leaching of nanosilver from commercially produced food storage containers. The silver nanoparticles were synthesized by a procedure devised by Leopold and Lendl, and subsequently evaluated for size and distribution by ICP-MS (Inductively Coupled Plasma Mass Spectrometry), SEC (Size Exclusion Chromatography), and DLS (Dynamic Light Scattering). The results indicated an average particle size of approximately 85 nm and a relatively monodispersed solution with a polydispersity value of 0.1245. The solubility of the nanoparticles was then examined using a dialysis experiment; however, the results of the dialysis experiments were inconclusive due to an aggregation that occurred which prevented the silver from diffusing out of the dialysis tubing. Lastly, commercially produced food storage containers advertised to contain silver nanoparticles were examined. These containers were digested using microwave assisted digestion, and subsequently analyzed using ICP-MS. It was determined that the containers contained between 7 .5 and 27 ug of silver per gram of container, and that the silver was not distributed uniformly throughout the container. While ICP-MS indicated the presence of silver, SEM (Scanning Electron Microscopy) failed to unambiguously identify silver nanoparticles in the container. The food storage containers were also examined for silver leaching under various conditions; it was found that the containers leached most greatly following exposure to an acidic solution and leached the least due to exposure to UV light. However, additional trials of the leaching experiments must be performed to validate the results obtained in these experiments.
ContributorsWilson, Amanda (Author) / Herckes, Pierre (Thesis director) / Westerhoff, Paul (Committee member) / McAllister, Chad (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136883-Thumbnail Image.png
Description
The current EPA regulation for total chromium in drinking water is the MCL standard of 0.1 milligrams per liter or 100 parts per billion (ppb) to avoid dermatological effects. With a toxicology study released in 2008 by the Department of Health and Human Services noting that hexavalent chromium is carcinogenic,

The current EPA regulation for total chromium in drinking water is the MCL standard of 0.1 milligrams per liter or 100 parts per billion (ppb) to avoid dermatological effects. With a toxicology study released in 2008 by the Department of Health and Human Services noting that hexavalent chromium is carcinogenic, the EPA is currently reviewing this MCL standard. During this review, the EPA provides monitoring guidance that requires quarterly sampling of surface water for hexavalent chromium. However, these samples monitor the instant in time that they were taken, and do not account for varying concentrations that are time-dependent. This research seeks to develop a method for monitoring hexavalent chromium in water. Using ion exchange technology, passive samplers were developed and installed at the Chandler Water Treatment Plant for a week-long monitoring event. Results show that passive samplers using ion exchange technology provide an accurate assessment of the average concentration of total chromium within the water treatment plant's effluent with 90.3% recovery of Cr(VI) in SIR-100 resin and 62.6% recovery in SIR-700.
ContributorsLesan, Dylan Scott (Author) / Westerhoff, Paul (Thesis director) / Supowit, Samuel (Committee member) / Bowen, Alexandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
136729-Thumbnail Image.png
Description
The rising need for water reuse in the Southwest United States has increased awareness of the quality of wastewater. This need is caused by an increased population having basic water needs; inefficient water use, such as overwatering lawns and leaking pipes; and recent drought conditions all over the southwestern US.

The rising need for water reuse in the Southwest United States has increased awareness of the quality of wastewater. This need is caused by an increased population having basic water needs; inefficient water use, such as overwatering lawns and leaking pipes; and recent drought conditions all over the southwestern US. Reclaimed water is a possible solution. It's used for a variety of non-potable, or non-drinkable, reasons. These uses include: cooling power plants, concrete mixing, artificial lakes, and irrigation for public parks and golf courts. Cooling power plants utilizes roughly 41% of the total water consumed by the United States, which makes it the highest user of water in the US. The attention is turned to optimizing mechanical processes and reducing the amount of water consumed. Wet-recirculating systems reuse cooling water in a second cycle rather than discharging it immediately. Cooling towers are commonly used to expose water to ambient air. As the water evaporates, more water is withdrawn while the rest continues to circulate. These systems have much lower water withdrawals than once-through systems, but have higher water consumption. The cooling towers in wet-recirculating plants and other warm machinery have two major limitations: evaporation of pumped water and scale formation in the components. Cooling towers circulate water, and only draw as it evaporates, which conserves water. The scale formation in the components is due to the hardness of the water. Scale occurs when hard water evaporates and forms solid calcium carbonate. This formation can lead to reduced flow or even clogging in pipes, fouling of components or pipes, and reduced cooling efficiency. Another concern from the public over the use of reclaimed water is the possibility of there being fecal contamination. This fear stems from the stigma associated with drinking water that essentially came from the toilet. An emerging technology, in order to address these three issues, is the use of an electromagnetic device. The wires have a current flowing through which induces a magnetic field perpendicular to the direction of the flow, while the electrical field is proportional to the flow velocity. In other words, the magnetic and electrical fields will create an effect that will concentrate cations at the center of the pipe and anions at the wall of the pipe or the other way depending on the direction of the flow. Reversing the field will then cause the cations and anions to move toward one another and increase the collision frequency and energy. The purpose of these experiments is to test the effects of the electromagnetic device on the aforementioned topics. There are three tests that were performed, a surface tension test, a hardness test, and a microbial test. The surface tension test focused on the angle of a water droplet until it burst. The angle would theoretically decrease as the bond between water molecules increased due to the device. The results of this test shows a lower angle for the treated water but a higher angle for the untreated one. This means the device had an effect on the surface tension of the water. Hard water is caused by calcium and magnesium ions in the water. These ions are dissolved in the water as it travels past soil and rocks. The purpose of this test is to measure the free calcium ion amount in the water. If the free calcium number lowers, then it can be assumed it collided with the carbonate and formed calcium carbonate. This calcium carbonate causes a reduction in hardness in the water. The result of the test showed no correlation between ion concentrations in the treated/untreated system. The e. coli test focused on testing the effects of an electromagnetic device on inhibiting fecal contamination in water/wastewater at a treatment facility. In order to detect fecal contamination, we test for bacteria known as fecal coliforms, more specifically e. coli. The test involved spiking the system with bacteria and testing its concentrations after time had passed.The e. coli results showed no trend in the inactivation of the bacteria. In conclusion, the device had varying results, but multiple steps can be taken in the future in order to continue research.
ContributorsHernandez, Andres Victor (Author) / Fox, Peter (Thesis director) / Abbaszadegan, Morteza (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
149595-Thumbnail Image.png
Description
The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future

The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future contaminants studied were the approximately 2000 pharmaceuticals currently undergoing testing by United States Food and Drug Administration (US FDA). Specific organic substances such as analgesics, antibiotics, and pesticides were used to verify the predicted half-lives by comparing with reported values in the literature. During sub-surface transport, an important component of indirect potable reuse systems, the effects of sorption and oxidation are important mechanisms. These mechanisms are not considered by the quantitative structure activity relationship (QSAR) model predictions for half-lives from EPI Suite. Modifying the predictions from EPI Suite to include the effects of sorption and oxidation greatly improved the accuracy of predictions in the sub-surface environment. During validation, the error was reduced by over 50% when the predictions were modified to include sorption and oxidation. Molecular weight (MW) is an important criteria for estimating the persistence of chemicals in the sub-surface environment. EPI Suite predicts that high MW compounds are persistent since the QSAR model assumes steric hindrances will prevent transformations. Therefore, results from EPI Suite can be very misleading for high MW compounds. Persistence was affected by the total number of halogen atoms in chemicals more than the sum of N-heterocyclic aromatics in chemicals. Most contaminants (over 90%) were non-persistent in the sub-surface environment suggesting that the target future drugs do not pose a significant risk to potable reuse systems. Another important finding is that the percentage of compounds produced from the biotechnology industry is increasing rapidly and should dominate the future production of pharmaceuticals. In turn, pharmaceuticals should become less persistent in the future. An evaluation of indirect potable reuse systems that use reverse osmosis (RO) for potential rejection of the target contaminants was performed by statistical analysis. Most target compounds (over 95%) can be removed by RO based on size rejection and other removal mechanisms.
ContributorsLim, Seung (Author) / Fox, Peter (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2011
149392-Thumbnail Image.png
Description
The deterioration of drinking-water quality within distribution systems is a serious cause for concern. Extensive water-quality deterioration often results in violations against regulatory standards and has been linked to water-borne disease outbreaks. The causes for the deterioration of drinking water quality inside distribution systems are not yet fully

The deterioration of drinking-water quality within distribution systems is a serious cause for concern. Extensive water-quality deterioration often results in violations against regulatory standards and has been linked to water-borne disease outbreaks. The causes for the deterioration of drinking water quality inside distribution systems are not yet fully understood. Mathematical models are often used to analyze how different biological, chemical, and physical phenomena interact and cause water quality deterioration inside distribution systems. In this dissertation research I developed a mathematical model, the Expanded Comprehensive Disinfection and Water Quality (CDWQ-E) model, to track water quality changes in chloraminated water. I then applied CDWQ-E to forecast water quality deterioration trends and the ability of Naegleria fowleri (N.fowleri), a protozoan pathogen, to thrive within drinking-water distribution systems. When used to assess the efficacy of substrate limitation versus disinfection in controlling bacterial growth, CDWQ-E demonstrated that bacterial growth is more effectively controlled by lowering substrate loading into distribution systems than by adding residual disinfectants. High substrate concentrations supported extensive bacterial growth even in the presence of high levels of chloramine. Model results also showed that chloramine decay and oxidation of organic matter increase the pool of available ammonia, and thus have potential to advance nitrification within distribution systems. Without exception, trends predicted by CDWQ-E matched trends observed from experimental studies. When CDWQ-E was used to evaluate the ability N. fowleri to survive in finished drinking water, the model predicted that N. fowleri can survive for extended periods of time in distribution systems. Model results also showed that N. fowleri growth depends on the availability of high bacterial densities in the 105 CFU/mL range. Since HPC levels this high are rarely reported in bulk water, it is clear that in distribution systems biofilms are the prime reservoirs N. fowleri because of their high bacterial densities. Controlled laboratory experiments also showed that drinking water can be a source of N. fowleri, and the main reservoir appeared to be biofilms dominated by bacteria. When introduced to pipe-loops N. fowleri successfully attached to biofilms and survived for 5 months.
ContributorsBiyela, Precious Thabisile (Author) / Rittmann, Bruce E. (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Butler, Caitlyn (Committee member) / Arizona State University (Publisher)
Created2010
130399-Thumbnail Image.png
Description
Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that

Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%.
Created2015-03-01
130346-Thumbnail Image.png
Description
Recent studies indicate the presence of nano-scale titanium dioxide (TiO[subscript 2]) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found

Recent studies indicate the presence of nano-scale titanium dioxide (TiO[subscript 2]) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO[subscript 2] (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.
Created2016-10-31
131516-Thumbnail Image.png
Description
The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity,

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.
ContributorsGreenberg, Samuel Gabe (Author) / Abbaszadegan, Morteza (Thesis director) / Schoepf, Jared (Committee member) / Alum, Absar (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132872-Thumbnail Image.png
Description
This thesis outlines the hand-held memory characterization testing system that is to be created into a PCB (printed circuit board). The circuit is designed to apply voltages diagonally through a RRAM cell (32x32 memory array). The purpose of this sweep across the RRAM is to measure and calculate the high

This thesis outlines the hand-held memory characterization testing system that is to be created into a PCB (printed circuit board). The circuit is designed to apply voltages diagonally through a RRAM cell (32x32 memory array). The purpose of this sweep across the RRAM is to measure and calculate the high and low resistance state value over a specified amount of testing cycles. With each cell having a unique output of high and low resistance states a unique characterization of each RRAM cell is able to be developed. Once the memory is characterized, the specific RRAM cell that was tested is then able to be used in a varying amount of applications for different things based on its uniqueness. Due to an inability to procure a packaged RRAM cell, a Mock-RRAM was instead designed in order to emulate the same behavior found in a RRAM cell.
The final testing circuit and Mock-RRAM are varied and complex but come together to be able to produce a measured value of the high resistance and low resistance state. This is done by the Arduino autonomously digitizing the anode voltage, cathode voltage, and output voltage. A ramp voltage that sweeps from 1V to -1V is applied to the Mock-RRAM acting as an input. This ramp voltage is then later defined as the anode voltage which is just one of the two nodes connected to the Mock-RRAM. The cathode voltage is defined as the other node at which the voltage drops across the Mock-RRAM. Using these three voltages as input to the Arduino, the Mock-RRAM path resistance is able to be calculated at any given point in time. Conducting many test cycles and calculating the high and low resistance values allows for a graph to be developed of the chaotic variation of resistance state values over time. This chaotic variation can then be analyzed further in the future in order to better predict trends and characterize the RRAM cell that was tested.
Furthermore, the interchangeability of many devices on the PCB allows for the testing system to do more in the future. Ports have been added to the final PCB in order to connect a packaged RRAM cell. This will allow for the characterization of a real RRAM memory cell later down the line rather than a Mock-RRAM as emulation. Due to the autonomous testing, very few human intervention is needed which makes this board a great baseline for others in the future looking to add to it and collect larger pools of data.
ContributorsDobrin, Ryan Christopher (Co-author) / Halden, Matthew (Co-author) / Hall, Tanner (Co-author) / Barnaby, Hugh (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05