Matching Items (1,653)
Filtering by

Clear all filters

152702-Thumbnail Image.png
Description
The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal wastewater. Efforts to identify the significance and potential health impacts

The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal wastewater. Efforts to identify the significance and potential health impacts of de facto water reuse are impeded by out dated information regarding the contribution of municipal wastewater effluent to potable water supplies. This project aims to answer this research need. The overall goal of the this project is to quantify the extent of de facto reuse by developing a model that estimates the amount of wastewater effluent that is present within drinking water treatment plants; and to use the model in conjunction with a survey to help assess public perceptions. The four-step approach to accomplish this goal includes: (1) creating a GIS-based model coupled with Python programming; (2) validating the model with field studies by analyzing sucralose as a wastewater tracer; (3) estimating the percentage of wastewater in raw drinking water sources under varying streamflow conditions; (4) and assessing through a social survey the perceptions of the general public relating to acceptance and occurrence of de facto reuse. The resulting De Facto Reuse in our Nations Consumable Supply (DRINCS) Model, estimates that treated municipal wastewater is present at nearly 50% of drinking water treatment plant intake sites serving greater than 10,000 people (N=2,056). Contrary to the high frequency of occurrence, the magnitude of occurrence is relatively low with 50% of impacted intakes yielding less than 1% de facto reuse under average streamflow conditions. Model estimates increase under low flow conditions (modeled by Q95), in several cases treated wastewater makes up 100% of the water supply. De facto reuse occurs at levels that surpass what is publically perceived in the three cities of Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Respondents with knowledge of de facto reuse occurrence are 10 times more likely to have a high acceptance (greater than 75%) of treated wastewater at their home tap.
ContributorsRice, Jacelyn (Author) / Westerhoff, Paul (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Vivoni, Enrique (Committee member) / Wutich, Amber (Committee member) / Arizona State University (Publisher)
Created2014
153308-Thumbnail Image.png
Description
Bacteria of the Legionella genus are a water-borne pathogen of increasing concern due to being responsible for more annual drinking water related disease outbreaks in the United States than all other microbes combined. Unfortunately, the development of public health policies concerning Legionella has impeded by several key factors,

Bacteria of the Legionella genus are a water-borne pathogen of increasing concern due to being responsible for more annual drinking water related disease outbreaks in the United States than all other microbes combined. Unfortunately, the development of public health policies concerning Legionella has impeded by several key factors, including a paucity of data on their interactions and growth requirements in water distribution networks, a poor understanding of potential transmission sources for legionellosis, and limitations in current methodology for the characterization of these pathogens. To address these issues, a variety of research approaches were taken. By measuring Legionella survival in tap water, association in pipe material biofilms, population dynamics in a model distribution system, and occurrence in drinking water distribution system biofilms, key aspects of Legionella ecology in drinking water systems were revealed. Through a series of experiments qualitatively and quantitatively examining the growth of Legionella via nutrients obtained from several water sources, environmental nutritional requirements and capability for growth in the absence of host organisms were demonstrated. An examination of automobile windshield washer fluid as a possible source of legionellosis transmission revealed Legionella survival in certain windshield washer fluids, growth within washer fluid reservoirs, high levels and frequency of contamination in washer fluid reservoirs, and the presence of viable cells in washer fluid spray, suggesting the potential for exposure to Legionella from this novel source. After performing a systematic and quantitative analysis of methodology optimization for the analysis of Legionella cells via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, several strains of this microbe isolated from separated and varied environmental water sampling sites were distinctly typed, demonstrating a potential application of this technology for the characterization of Legionella. The results from this study provide novel insight and methodology relevant to the development of programs for the monitoring and treatment of Legionella in drinking water systems.
ContributorsSchwake, David Otto (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
153232-Thumbnail Image.png
Description
Since its first report in 1976, many outbreaks of Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which cause Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in

Since its first report in 1976, many outbreaks of Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which cause Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in the reported outbreaks. This study consists of an extensive literature review and experimental work on the aerosolization of Legionella and a bacterial surrogate under laboratory conditions. The literature review summarizes Legionella characteristics, legionellosis, potential sources of Legionella, disease outbreaks, collection and detection methodologies, environmental conditions for growth and survival of Legionella, Gaussian plume dispersion modeling, and recommendations for reducing potential Legionella outbreaks. The aerosolization and airborne dispersion of Legionella and E. coli was conducted separately inside of a closed environment. First, the bacterial cells were sprayed inside of an airtight box and then samples were collected using a microbial air sampler to measure the number of bacterial cells aerosolized and transported in air. Furthermore, a Gaussian plume dispersion model was used to estimate the dispersion under the experimental conditions and parameters. The concentration of Legionella was estimated for a person inhaling the air at three different distances away from the spray. The concentration of Legionella at distances of 0.1 km, 1 km, and 10 km away from the source was predicted to be 1.7x10-1, 2.2x10-3, and 2.6x10-5 CFU/m3, respectively.
ContributorsTaghdiri, Sepideh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Estes, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153234-Thumbnail Image.png
Description
Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.
ContributorsSharma, Harsha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153175-Thumbnail Image.png
Description
Sea ice algae dominated by diatoms inhabit the brine channels of the Arctic sea ice and serve as the base of the Arctic marine food web in the spring. I studied sea ice diatoms in the bottom 10 cm of first year land-fast sea ice off the coast of Barrow,

Sea ice algae dominated by diatoms inhabit the brine channels of the Arctic sea ice and serve as the base of the Arctic marine food web in the spring. I studied sea ice diatoms in the bottom 10 cm of first year land-fast sea ice off the coast of Barrow, AK, in spring of 2011, 2012, and 2013. I investigated the variability in the biomass and the community composition of these sea-ice diatoms between bloom phases, as a function of overlying snow depth and over time. The dominant genera were the pennate diatoms Nitzschia, Navicula, Thalassiothrix, and Fragilariopsis with only a minor contribution by centric diatoms. While diatom biomass as estimated by organic carbon changed significantly between early, peak, and declining bloom phases (average of 1.6 mg C L-1, 5.7 mg C L-1, and 1.0 mg C L-1, respectively), the relative ratio of the dominant diatom groups did not change. However, after export, when the diatoms melt out of the ice into the underlying water, diatom biomass dropped by ~73% and the diatom community shifted to one dominated by centric diatoms. I also found that diatom biomass was ~77% lower under high snow cover (>20 cm) compared to low snow cover (<8 cm); however, the ratio of the diatom categories relative to particulate organic carbon (POC) was again unchanged. The diatom biomass was significantly different between the three sampling years (average of 2.4 mg C L-1 in 2011, 1.1 mg C L-1 in 2012, and 5.4 mg C L-1 in 2013, respectively) as was the contribution of all of the dominant genera to POC. I hypothesize the latter to be due to differences in the history of ice sheet formation each year. The temporal variability of these algal communities will influence their availability for pelagic or benthic consumers. Furthermore, in an Arctic that is changing rapidly with earlier sea ice and snowmelt, this time series study will constitute an important baseline for further studies on how the changing Arctic influences the algal community immured in sea ice.
ContributorsKinzler, Kyle (Author) / Neuer, Susanne (Thesis advisor) / Juhl, Andrew (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
153298-Thumbnail Image.png
Description
Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of these phototrophic microbes for biofuel production. Viruses have the potential to significantly reduce microbial populations and limit their growth rates. It is therefore important to understand how viruses affect phototrophic microbes and the prevalence of these viruses in the environment. For this study, phototrophic microbes were grown in glass bioreactors, under continuous light and aeration. Detection and quantification of viruses of both environmental and laboratory microbial strains were measured through the use of a plaque assay. Plates were incubated at 25º C under continuous direct florescent light. Several environmental samples were taken from Tempe Town Lake (Tempe, AZ) and all the samples tested positive for viruses. Virus free phototrophic microbes were obtained from plaque assay plates by using a sterile loop to scoop up a virus free portion of the microbial lawn and transferred into a new bioreactor. Isolated cells were confirmed virus free through subsequent plaque assays. Viruses were detected from the bench scale bioreactors of Cyanobacteria Synechocystis PCC 6803 and the environmental samples. Viruses were consistently present through subsequent passage in fresh cultures; demonstrating viral contamination can be a chronic problem. In addition TEM was performed to examine presence or viral attachment to cyanobacterial cells and to characterize viral particles morphology. Electron micrographs obtained confirmed viral attachment and that the viruses detected were all of a similar size and shape. Particle sizes were measured to be approximately 50-60 nm. Cell reduction was observed as a decrease in optical density, with a transition from a dark green to a yellow green color for the cultures. Phototrophic microbial viruses were demonstrated to persist in the natural environment and to cause a reduction in algal populations in the bioreactors. Therefore it is likely that viruses could have a significant impact on microbial biofuel production by limiting the yields of production ponds.
ContributorsKraft, Kyle (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153246-Thumbnail Image.png
Description
This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column

This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column study was set up to measure Legionella transport in the columns under Arizona recharge basin conditions. Two columns, A and B, were packed to a depth of 122 cm with a loamy sand media collected from a recharge basin in Mesa, Arizona. The grain size distribution of Column A differed from that of Column B by the removal of fines passing the #200 sieve. The different soil profiles represented by column A and B allowed for further investigation of soil attributes which influence the microbial transport mechanism. Both clear PVC columns stand at a height of 1.83 m with an inner diameter of 6.35 cm. Sampling ports were drilled into the column at the soil depths 15, 30, 60, 92, 122 cm. Both columns were acclimated with tertiary treated waste water and set to a flow rate of approximately 1.5 m/d. The columns were used to assess the transport of a bacterial indicator, E. coli, in addition to assessing the study's primary pathogen of concern, Legionella. Approximately, 〖10〗^7 to 〖10〗^9 E. coli cells or 〖10〗^6 to 〖10〗^7Legionella cells were spiked into the columns' head waters for each experiment. Periodically, samples were collected from each column's sampling ports, until a minimum of three pore volume passed through the columns.

The pilot-scale, column study produced novel results which demonstrated the mechanism for Legionella to be transported through recharge basin soil. E. coli was transported, through 122 cm of the media in under 6 hours, whereas, Legionella was transported, through the same distance, in under 30 hours. Legionella has been shown to survive in low nutrient conditions for over a year. Given the novel results of this proof of concept study, a claim can be made for the transport of Legionella into groundwater aquifers through engineering recharge basin conditions, in Central Arizona.
ContributorsMcBurnett, Lauren Rae (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
150162-Thumbnail Image.png
Description
Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the

Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the oxidation and removal of DBP precursors (NOM) and the inhibition of DBP formation. Water sources were collected from various points in the treatment process, treated with photocatalysis, and chlorinated to analyze the implications on total trihalomethane (TTHM) and the five haloacetic acids (HAA5) formations. The three sub-objectives for this study included: the comparison of enhanced and standard coagulation to photocatalysis for the removal of DBP precursors; the analysis of photocatalysis and characterization of organic matter using size exclusion chromatography and fluorescence spectroscopy and excitation-emission matrices; and the analysis of photocatalysis before GAC filtration. There were consistencies in the trends for each objective including reduced DBP precursors, measured as dissolved organic carbon DOC concentration and UV absorbance at 254 nm. Both of these parameters decreased with increased photocatalytic treatment and could be due in part to the adsorption to as well as the oxidation of NOM on the TiO2 surface. This resulted in lower THM and HAA concentrations at Medium and High photocatalytic treatment levels. However, at No UV exposure and Low photocatalytic treatment levels where oxidation reactions were inherently incomplete, there was an increase in THM and HAA formation potential, in most cases being significantly greater than those found in the raw water or Control samples. The size exclusion chromatography (SEC) results suggest that photocatalysis preferentially degrades the higher molecular mass fraction of NOM releasing lower molecular mass (LMM) compounds that have not been completely oxidized. The molecular weight distributions could explain the THM and HAA formation potentials that decreased at the No UV exposure samples but increased at Low photocatalytic treatment levels. The use of photocatalysis before GAC adsorption appears to increase bed life of the contactors; however, higher photocatalytic treatment levels have been shown to completely mineralize NOM and would therefore not require additional GAC adsorption after photocatalysis.
ContributorsDaugherty, Erin (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Mayer, Brooke (Committee member) / Arizona State University (Publisher)
Created2011
150078-Thumbnail Image.png
Description
In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude

In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude in Saguaro Lake, and that community structure differed. The purpose of this investigation was to determine why the reservoirs are different, and focused on physical characteristics of the water column, nutrient concentration, community structure of phytoplankton and zooplankton, and trophic cascades induced by fish populations. I formulated the following hypotheses: 1) Top-down control varies between the two reservoirs. The presence of piscivore fish in Lake Pleasant results in high grazer and low primary producer biomass through trophic cascades. Conversely, Saguaro Lake is controlled from the bottom-up. This hypothesis was tested through monthly analysis of zooplankton and phytoplankton communities in each reservoir. Analyses of the nutritional value of phytoplankton and DNA based molecular prey preference of zooplankton provided insight on trophic interactions between phytoplankton and zooplankton. Data from the Arizona Game and Fish Department (AZGFD) provided information on the fish communities of the two reservoirs. 2) Nutrient loads differ for each reservoir. Greater nutrient concentrations yield greater primary producer biomass; I hypothesize that Saguaro Lake is more eutrophic, while Lake Pleasant is more oligotrophic. Lake Pleasant had a larger zooplankton abundance and biomass, a larger piscivore fish community, and smaller phytoplankton abundance compared to Saguaro Lake. Thus, I conclude that Lake Pleasant was controlled top-down by the large piscivore fish population and Saguaro Lake was controlled from the bottom-up by the nutrient load in the reservoir. Hypothesis 2 stated that Saguaro Lake contains more nutrients than Lake Pleasant. However, Lake Pleasant had higher concentrations of dissolved nitrogen and phosphorus than Saguaro Lake. Additionally, an extended period of low dissolved N:P ratios in Saguaro Lake indicated N limitation, favoring dominance of N-fixing filamentous cyanobacteria in the phytoplankton community in that reservoir.
ContributorsSawyer, Tyler R (Author) / Neuer, Susanne (Thesis advisor) / Childers, Daniel L. (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2011
150180-Thumbnail Image.png
Description
The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for

The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for anthropogenic carbon dioxide. A full understanding of the workings of the biological carbon pump requires a knowledge of the role of different taxonomic groups of phytoplankton (protists and cyanobacteria) to organic carbon export. However, this has been difficult due to the degraded nature of particles sinking into particle traps, the main tools employed by oceanographers to collect sinking particulate matter in the ocean. In this study DNA-based molecular methods, including denaturing gradient gel electrophoresis, cloning and sequencing, and taxon-specific quantitative PCR, allowed for the first time for the identification of which protists and cyanobacteria contributed to the material collected by the traps in relation to their presence in the euphotic zone. I conducted this study at two time-series stations in the subtropical North Atlantic Ocean, one north of the Canary Islands, and one located south of Bermuda. The Bermuda study allowed me to investigate seasonal and interannual changes in the contribution of the plankton community to particle flux. I could also show that small unarmored taxa, including representatives of prasinophytes and cyanobacteria, constituted a significant fraction of sequences recovered from sediment trap material. Prasinophyte sequences alone could account for up to 13% of the clone library sequences of trap material during bloom periods. These observations contradict a long-standing paradigm in biological oceanography that only large taxa with mineral shells are capable of sinking while smaller, unarmored cells are recycled in the euphotic zone through the microbial loop. Climate change and a subsequent warming of the surface ocean may lead to a shift in the protist community toward smaller cell size in the future, but in light of these findings these changes may not necessarily lead to a reduction in the strength of the biological carbon pump.
ContributorsAmacher, Jessica (Author) / Neuer, Susanne (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Lomas, Michael (Committee member) / Wojciechowski, Martin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011