Matching Items (23)
153500-Thumbnail Image.png
Description
Parkinson's disease (PD) is a neurodegenerative disorder that produces a characteristic set of neuromotor deficits that sometimes includes reduced amplitude and velocity of movement. Several studies have shown that people with PD improved their motor performance when presented with external cues. Other work has demonstrated that high velocity

Parkinson's disease (PD) is a neurodegenerative disorder that produces a characteristic set of neuromotor deficits that sometimes includes reduced amplitude and velocity of movement. Several studies have shown that people with PD improved their motor performance when presented with external cues. Other work has demonstrated that high velocity and large amplitude exercises can increase the amplitude and velocity of movement in simple carryover tasks in the upper and lower extremities. Although the cause for these effects is not known, improvements due to cueing suggest that part of the neuromotor deficit in PD is in the integration of sensory feedback to produce motor commands. Previous studies have documented some somatosensory deficits, but only limited information is available regarding the nature and magnitude of sensorimotor deficits in the shoulder of people with PD. The goals of this research were to characterize the sensorimotor impairment in the shoulder joint of people with PD and to investigate the use of visual feedback and large amplitude/high velocity exercises to target PD-related motor deficits. Two systems were designed and developed to use visual feedback to assess the ability of participants to accurately adjust limb placement or limb movement velocity and to encourage improvements in performance of these tasks. Each system was tested on participants with PD, age-matched control subjects and young control subjects to characterize and compare limb placement and velocity control capabilities. Results demonstrated that participants with PD were less accurate at placing their limbs than age-matched or young control subjects, but that their performance improved over the course of the test session such that by the end, the participants with PD performed as well as controls. For the limb velocity feedback task, participants with PD and age-matched control subjects were less accurate than young control subjects, but at the end of the session, participants with PD and age-matched control subjects were as accurate as the young control subjects. This study demonstrates that people with PD were able to improve their movement patterns based on visual feedback of performance and suggests that this feedback paradigm may be useful in exercise programs for people with PD.
ContributorsSmith, Catherine (Author) / Abbas, James J (Thesis advisor) / Ingalls, Todd (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Buneo, Christopher (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2015
153054-Thumbnail Image.png
Description
During attempted fixation, the eyes are not still but continue to produce so called "fixational eye movements", which include microsaccades, drift, and tremor. Microsaccades are thought to help prevent and restore vision loss during fixation, and to correct fixation errors, but how they contribute to these functions remains a matter

During attempted fixation, the eyes are not still but continue to produce so called "fixational eye movements", which include microsaccades, drift, and tremor. Microsaccades are thought to help prevent and restore vision loss during fixation, and to correct fixation errors, but how they contribute to these functions remains a matter of debate. This dissertation presents the results of four experiments conducted to address current controversies concerning the role of microsaccades in visibility and oculomotor control.

The first two experiments set out to correlate microsaccade production with the visibility of foveal and peripheral targets of varied spatial frequencies, during attempted fixation. The results indicate that microsaccades restore the visibility of both peripheral targets and targets presented entirely within the fovea, as a function of their spatial frequency characteristics.

The last two experiments set out to determine the role of microsaccades and drifts on the correction of gaze-position errors due to blinks in human and non-human primates, and to characterize microsaccades forming square-wave jerks (SWJs) in non-human primates. The results showed that microsaccades, but not drifts, correct gaze-position errors due to blinks, and that SWJ production and dynamic properties are equivalent in human and non-human primates.

These combined findings suggest that microsaccades, like saccades, serve multiple and non-exclusive functional roles in vision and oculomotor control, as opposed to having a single specialized function.
ContributorsCostela, Francisco M (Author) / Crook, Sharon M (Committee member) / Martinez-Conde, Susana (Committee member) / Macknik, Stephen L. (Committee member) / Baer, Stephen (Committee member) / McCamy, Michael B (Committee member) / Arizona State University (Publisher)
Created2014
153170-Thumbnail Image.png
Description
Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the subcellular environment non-linearly slowing the diffusion of molecules. Compared to normal diffusion, signaling molecules in these constrained spaces can be more concentrated at the source, and more diffuse at longer distances, potentially effecting the signalling dynamics. As diffusion at the cellular scale is a fundamental mechanism of cellular signaling and additionally is an implicit underlying mathematical assumption of many canonical models, a closer look at models of anomalous diffusion is warranted. Approaches in the literature include derivations of fractional differential diffusion equations (FDE) and continuous time random walks (CTRW). However these approaches are typically based on \emph{ad-hoc} assumptions on time- and space- jump distributions. We apply recent developments in asymptotic techniques on collisional kinetic equations to develop a FDE model of sub-diffusion due to trapping regions and investigate the nature of the space/time probability distributions assosiated with trapping regions. This approach both contrasts and compliments the stochastic CTRW approach by positing more physically realistic underlying assumptions on the motion of particles and their interactions with trapping regions, and additionally allowing varying assumptions to be applied individually to the traps and particle kinetics.
ContributorsHoleva, Thomas Matthew (Author) / Ringhofer, Christian (Thesis advisor) / Baer, Steve (Thesis advisor) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Taylor, Jesse (Committee member) / Arizona State University (Publisher)
Created2014
149953-Thumbnail Image.png
Description
The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability to exploit sparsity. Traditional interior point methods encounter difficulties in computation for solving the CS applications. In the first part of this work, a fast algorithm based on the augmented Lagrangian method for solving the large-scale TV-$\ell_1$ regularized inverse problem is proposed. Specifically, by taking advantage of the separable structure, the original problem can be approximated via the sum of a series of simple functions with closed form solutions. A preconditioner for solving the block Toeplitz with Toeplitz block (BTTB) linear system is proposed to accelerate the computation. An in-depth discussion on the rate of convergence and the optimal parameter selection criteria is given. Numerical experiments are used to test the performance and the robustness of the proposed algorithm to a wide range of parameter values. Applications of the algorithm in magnetic resonance (MR) imaging and a comparison with other existing methods are included. The second part of this work is the application of the TV-$\ell_1$ model in source localization using sensor arrays. The array output is reformulated into a sparse waveform via an over-complete basis and study the $\ell_p$-norm properties in detecting the sparsity. An algorithm is proposed for minimizing a non-convex problem. According to the results of numerical experiments, the proposed algorithm with the aid of the $\ell_p$-norm can resolve closely distributed sources with higher accuracy than other existing methods.
ContributorsShen, Wei (Author) / Mittlemann, Hans D (Thesis advisor) / Renaut, Rosemary A. (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Gelb, Anne (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2011
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012
150809-Thumbnail Image.png
Description
Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to

Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for examining the dynamics of DA synthesis, storage, release and reuptake. The model can be driven by action potentials generated by any model of excitable membrane potential or even from experimentally induced depolarization voltage recordings. Here the model is forced by a previously published model of the excitable membrane of a mesencephalic DA neuron in order to study the biochemical processes involved in extracellular DA production. After demonstrating that the model exhibits realistic dynamics resembling those observed experimentally, the model is used to examine the functional changes in presynaptic mechanisms due to application of cocaine. Sensitivity analysis and numerical studies that focus on various possible mechanisms for the inhibition of DAT by cocaine provide insight for the complex interactions involved in DA dynamics. In particular, comparing numerical results for a mixed inhibition mechanism to those for competitive, non-competitive and uncompetitive inhibition mechanisms reveals many behavioral similarities for these different types of inhibition that depend on inhibition parameters and levels of cocaine. Placing experimental results within this context of mixed inhibition provides a possible explanation for the conflicting views of uptake inhibition mechanisms found in experimental neuroscience literature.
ContributorsTello-Bravo, David (Author) / Crook, Sharon M (Thesis advisor) / Greenwood, Priscilla E (Thesis advisor) / Baer, Steven M. (Committee member) / Castaneda, Edward (Committee member) / Castillo-Chavez, Carlos (Committee member) / Arizona State University (Publisher)
Created2012
154081-Thumbnail Image.png
Description
Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second

Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second order model for the product density and product speed has previously been proposed. The resulting partial differential equations (PDE) are compared to discrete event simulations (DES) that simulate factory production as a time dependent M/M/1 queuing system. Three fundamental scenarios for the time dependent influx are studied: An instant step up/down of the mean arrival rate; an exponential step up/down of the mean arrival rate; and periodic variation of the mean arrival rate. It is shown that the second order model, in general, yields significant improvement over current first order models. Specifically, the agreement between the DES and the PDE for the step up and for periodic forcing that is not too rapid is very good. Adding diffusion to the PDE further improves the agreement. The analysis also points to fundamental open issues regarding the deterministic modeling of low signal-to-noise ratio for some stochastic processes and the possibility of resonance in deterministic models that is not present in the original stochastic process.
ContributorsWienke, Matthew (Author) / Armbruster, Dieter (Thesis advisor) / Jones, Donald (Committee member) / Platte, Rodrigo (Committee member) / Gardner, Carl (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2015
154089-Thumbnail Image.png
Description
Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynamical swarming solutions are found.

The Attraction-Repulsion Model set with a long-range attraction and short-range repulsion interaction potential typically stabilizes to a well-studied flock steady state solution. The particles for a flock remain spatially coherent but have no spatial bound and explore all space. A bounded domain with specularly reflecting walls traps the particles within a specific region. A fundamental refraction law for a swarm impacting on a planar boundary is derived. The swarm reflection varies from specular for a swarm dominated by

kinetic energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to alignment with the wall and to damped pulsating oscillations of the swarm. The fundamental refraction law provides a one-dimensional iterative map that allows for a prediction and analysis of the trajectory of the center of mass of a flock in a channel and a square domain.

The extension of the wall collisions to a scattering experiment is conducted by setting two identical flocks to collide. The two particle dynamics is studied analytically and shows a transition from scattering: diverging flocks to bound states in the form of oscillations or parallel motions. Numerical studies of collisions of flocks show the same transition where the bound states become either a single translating flock or a rotating (mill).
ContributorsThatcher, Andrea (Author) / Armbruster, Hans (Thesis advisor) / Motsch, Sebastien (Committee member) / Ringhofer, Christian (Committee member) / Platte, Rodrigo (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2015
156080-Thumbnail Image.png
Description
While techniques for reading DNA in some capacity has been possible for decades,

the ability to accurately edit genomes at scale has remained elusive. Novel techniques

have been introduced recently to aid in the writing of DNA sequences. While writing

DNA is more accessible, it still remains expensive, justifying the increased interest in

in

While techniques for reading DNA in some capacity has been possible for decades,

the ability to accurately edit genomes at scale has remained elusive. Novel techniques

have been introduced recently to aid in the writing of DNA sequences. While writing

DNA is more accessible, it still remains expensive, justifying the increased interest in

in silico predictions of cell behavior. In order to accurately predict the behavior of

cells it is necessary to extensively model the cell environment, including gene-to-gene

interactions as completely as possible.

Significant algorithmic advances have been made for identifying these interactions,

but despite these improvements current techniques fail to infer some edges, and

fail to capture some complexities in the network. Much of this limitation is due to

heavily underdetermined problems, whereby tens of thousands of variables are to be

inferred using datasets with the power to resolve only a small fraction of the variables.

Additionally, failure to correctly resolve gene isoforms using short reads contributes

significantly to noise in gene quantification measures.

This dissertation introduces novel mathematical models, machine learning techniques,

and biological techniques to solve the problems described above. Mathematical

models are proposed for simulation of gene network motifs, and raw read simulation.

Machine learning techniques are shown for DNA sequence matching, and DNA

sequence correction.

Results provide novel insights into the low level functionality of gene networks. Also

shown is the ability to use normalization techniques to aggregate data for gene network

inference leading to larger data sets while minimizing increases in inter-experimental

noise. Results also demonstrate that high error rates experienced by third generation

sequencing are significantly different than previous error profiles, and that these errors can be modeled, simulated, and rectified. Finally, techniques are provided for amending this DNA error that preserve the benefits of third generation sequencing.
ContributorsFaucon, Philippe Christophe (Author) / Liu, Huan (Thesis advisor) / Wang, Xiao (Committee member) / Crook, Sharon M (Committee member) / Wang, Yalin (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2017
156315-Thumbnail Image.png
Description
Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting

of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and

Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting

of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and risk pooling,

agent-based simulations are conducted to explore socially optimal transfer policies

and sharing network structures, kinetic exchange models that utilize tools from the kinetic

theory of gas dynamics are utilized to characterize the wealth distribution of an NBT economy,

and a variant of repeated prisoner’s dilemma is analyzed to determine whether and

why individuals would participate in such a system of reciprocal altruism.

From agent-based simulation and kinetic exchange models, it is found that regressive

NBT wealth redistribution acts as a cutting stock optimization heuristic that most efficiently

matches deficits to surpluses to improve short-term survival; however, progressive

redistribution leads to a wealth distribution that is more stable in volatile environments and

therefore is optimal for long-term survival. Homogeneous sharing networks with low variance

in degree are found to be ideal for maintaining community viability as the burden and

benefit of NBTs is equally shared. Also, phrasing NBTs as a survivor’s dilemma reveals

parameter regions where the repeated game becomes equivalent to a stag hunt or harmony

game, and thus where cooperation is evolutionarily stable.
ContributorsKayser, Kirk (Author) / Armbruster, Dieter (Thesis advisor) / Lampert, Adam (Committee member) / Ringhofer, Christian (Committee member) / Motsch, Sebastien (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018