Matching Items (153)
Filtering by

Clear all filters

130891-Thumbnail Image.png
Description
Tactile and proprioceptive sensory feedback are the two sensory modalities that make up haptic sensation. The degree which these two sensory modalities are integrated together is not very well known. To investigate this issue a set of experiments were set into motion separating these sensory modalities and testing what happens

Tactile and proprioceptive sensory feedback are the two sensory modalities that make up haptic sensation. The degree which these two sensory modalities are integrated together is not very well known. To investigate this issue a set of experiments were set into motion separating these sensory modalities and testing what happens when a person’s proprioceptive system is perturbed. A virtual reality system with haptic feedback along with a weighted object were utilized in a reach, grasp, and lift task. The subjects would lift two objects sequentially and try to judge which one was heavier. This project was split into three different experiments to measure the subject’s perception in different situations. The first experiment utilized the virtual reality system to measure the perception when the subject only has proprioceptive inputs. The second experiment would include the virtual reality system and the weighted object to act as a comparison to the first experiment with the additional tactile input. The third experiment would then add perturbations to the proprioceptive inputs through the virtual reality system to investigate how perception will change. Results from experiment 1 and 2 showed that subjects are almost just as accurate with weight discrimination even if they only have proprioceptive inputs however, subjects are much more consistent in their weight discrimination with both sensory modalities. Results from experiment 3 showed that subjective perception does change when the proprioception is perturbed but the magnitude of that change in perception depends on the perturbation performed.
ContributorsPerrine, Jacob (Author) / Santello, Marco (Thesis director) / Toma, Simone (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01
132592-Thumbnail Image.png
Description
In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point

In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point inhibitors (CPI), significantly slowed tumor growth, reduced pulmonary metastasis and increased the cell-mediated immune response. In terms of tumor volumes, the mPC FAST vaccine was comparable to the untreated controls. However, a significant difference in tumor volume did emerge when the mPC vaccine was used with CPI. The collective data indicated that the immune checkpoint blockade therapy was only beneficial with suboptimal neoantigens. More importantly, the FAST vaccine, though requiring notably less resources, performed similarly to the personalized version of the frameshift breast cancer vaccine in the same mouse model. Furthermore, because the frameshift peptide (FSP) array provided a strong rationale for a focused vaccine, the FAST vaccine can theoretically be expanded and translated to any human cancer type. Overall, the FAST vaccine is a promising treatment that would provide the most benefit to patients while eliminating most of the challenges associated with current personal cancer vaccines.
ContributorsMurphy, Sierra Nicole (Author) / Johnston, Stephen (Thesis director) / Peterson, Milene (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133512-Thumbnail Image.png
Description
The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed cases of Congenital Zika Syndrome in infants, making a Zika Vaccine a high priority (Mitchell, 2018). SEPHODIS is a process that involves prolonged exposure of an object to a pulsing laser which can render it ineffective. Initially, ZIKV was subjected to laser inactivation for 6 hours, then a plaque assay was performed on both laser-treated and control samples. ZIKV was inactivated two-fold? after laser treatment, when compared with control, as indicated by the plaque assay results. Additionally, both samples were submitted to ELISA to evaluate antigenicity with a panel of monoclonal and human sera. As a second control, virus inactivated by formaldehyde (2%) was used. ELISA results showed that antigenicity of some proteins were preserved while others were probably disturbed. However, ELISA results show that ZIKV envelope protein (E-protein), the protein responsible for viral entry into cells, was effectively preserved after laser-treatment, implying that if laser parameters were tweaked to obtain more complete inactivation, then SEPHODIS may be an appropriate source for the development of a vaccine.
ContributorsViafora, Ataiyo Blue (Author) / Johnston, Stephen (Thesis director) / Tsen, Kong-Thon (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134876-Thumbnail Image.png
Description
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
ContributorsMujahed, Tala (Author) / Johnston, Stephen (Thesis director) / Blattman, Joseph (Committee member) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134658-Thumbnail Image.png
Description
Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with

Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with the vaccine and pharmaceutical markets to significantly lower their costs. Smartphones and computers were the two main items investigated while the two main items from the scientific standpoint were vaccines and pharmaceuticals. One concept had the ability to conceivably decrease the costs of vaccines and drugs and that was "market competition". If the United States were able to allow competition within the vaccine and drug companies, it would allow for the product prices to be best affected. It would only take a few small companies to generate generic versions of the drugs and decrease the prices. It would force the larger competition to most likely decrease their prices. Furthermore, the PC companies use a cumulative density function (CDF) to effectively divide their price setting in each product cycle. It was predicted that if this CDF model were applied to the vaccine and drug markets, the prices would no longer have to be extreme. The corporations would be able to set the highest price for the wealthiest consumers and then slowly begin to decrease the costs for the middle and lower class. Unfortunately, the problem within the vaccine and pharmaceutical markets was not the lack of innovation or business models. The problem lied with their liberty to choose product costs due to poor U.S. government regulations.
ContributorsCalderon, Gerardo (Author) / Johnston, Stephen (Thesis director) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135353-Thumbnail Image.png
Description
Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal

Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal of this thesis was to design a collapsible, instrumented object to study grasp of breakable objects. Such an object would enable experiments on human grip responses to unexpected finger-object events as well as anticipatory mechanisms once object fragility has been observed. The collapsible object was designed to be modular to allow for properties such as friction and breaking force to be altered. The instrumented object could be used to study both human and artificial grasp.
ContributorsTorrez, Troy (Author) / Santos, Veronica (Thesis director) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05