Matching Items (166)
168383-Thumbnail Image.png
Description
Biogas’s potential as a renewable fuel source has been an area of increased research in recent years. One issue preventing wide-spread use of biogas as a fuel is the trace amounts of impurities that damage fuel-burning equipment by depositing silicon, sulfur, calcium and other elements on their surface. This study

Biogas’s potential as a renewable fuel source has been an area of increased research in recent years. One issue preventing wide-spread use of biogas as a fuel is the trace amounts of impurities that damage fuel-burning equipment by depositing silicon, sulfur, calcium and other elements on their surface. This study aims to analyze the effects of a high concentration of L4 linear siloxane on solid oxide fuel cell performance until failure occurs. L4 siloxane has not been extensively researched previously, and this investigation aims to provide new data to support similar, though slower, degradation compared to D4, D5 and other siloxanes in solid oxide fuel cells. The experiments were conducted inside a furnace heated to 800℃ with an Ni-YSZ-supported (Nickel-yttria-stabilized zirconia) fuel cell. A fuel source with a flow rate of 20 mL/min of hydrogen gas, 10 mL/min of nitrogen gas and 0.15 mL/min of L4 siloxane was used. Air was supplied to the cathode. The effects of siloxane deposition on cell voltage and power density degradation and resistance increase were studied by using techniques like the current-voltage method, electrochemical impedance spectroscopy, and gas chromatography. The results of the experiment after reduction show roughly constant degradation of 8.35 mV/hr, followed after approximately 8 hours by an increasing degradation until cell failure of 130.45 mV/hr. The initial degradation and stagnation match previous research in siloxane deposition on SOFCs, but the sharp decline to failure does not. A mechanism for solid oxide fuel cell failure is proposed based on the data.
ContributorsRiley, Derall M. (Author) / Milcarek, Ryan J (Thesis advisor) / Wang, Liping (Committee member) / Phelan, Patrick E (Committee member) / Arizona State University (Publisher)
Created2021
171541-Thumbnail Image.png
Description
The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to

The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to magic-sized clusters. Magic-sized clusters have an anomalously high thermal conductivity relative to the extrapolated size-dependence trend line for the colloidal nanocrystals. This anomalously high thermal conductivity could probably result from the monodispersity of magic-sized clusters. To support this conjecture, a method of deliberately eliminating the monodispersity of MSCs by mixing them with colloidal nanocrystals was performed. Experiment results showed that mixtures of nanocrystals and MSCs have a lower thermal conductivity that falls approximately on the extrapolated trendline for colloidal nanocrystal thermal conductivity as a function of size.
ContributorsSun, Ming-Hsien (Author) / Wang, Robert (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2022
171605-Thumbnail Image.png
Description
Windows are one of the most significant locations of heat transfer through a building envelope. In warm climates, it is important that heat gain through windows is minimized. Heat transfer through a window glazing occurs by all major forms of heat transfer (convection, conduction, and radiation). Convection and conduction

Windows are one of the most significant locations of heat transfer through a building envelope. In warm climates, it is important that heat gain through windows is minimized. Heat transfer through a window glazing occurs by all major forms of heat transfer (convection, conduction, and radiation). Convection and conduction effects can be limited by manipulating the thermal properties of a window’s construction. However, radiation heat transfer into a building will always occur if a window glazing is visibly transparent. In an effort to reduce heat gain through the building envelope, a window glazing can be designed with spectrally selective properties. These spectrally selective glazings would possess high reflectivity in the near-infrared (NIR) regime (to prevent solar heat gain) and high emissivity in the atmospheric window, 8-13μm (to take advantage of the radiative sky cooling effect). The objective of this thesis is to provide a comprehensive study of the thermal performance of a visibly transparent, high-emissivity glass window. This research proposes a window constructed by coating soda lime glass in a dual layer consisting of Indium Tin Oxide (ITO) and Polyvinyl Fluoride (PVF) film. The optical properties of this experimental glazing were measured and demonstrated high reflectivity in the NIR regime and high emissivity in the atmospheric window. Outdoor field tests were performed to experimentally evaluate the glazing’s thermal performance. The thermal performance was assessed by utilizing an experimental setup intended to mimic a building with a skylight. The proposed glazing experimentally demonstrated reduced indoor air temperatures compared to bare glass, ITO coated glass, and PVF coated glass. A theoretical heat transfer model was developed to validate the experimental results. The results of the theoretical and experimental models showed good agreement. On average, the theoretical model demonstrated 0.44% percent error during the daytime and 0.52% percent error during the nighttime when compared to the experimentally measured temperature values.
ContributorsTrujillo, Antonio Jose (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
171585-Thumbnail Image.png
Description
I present results of field and laboratory experiments investigating the habitability of one of Earth’s driest environments: the Atacama Desert. This Desert, along the west coast of South America spanning Perú and Chile, is one of the driest places on Earth and has been exceedingly arid for millions of years.

I present results of field and laboratory experiments investigating the habitability of one of Earth’s driest environments: the Atacama Desert. This Desert, along the west coast of South America spanning Perú and Chile, is one of the driest places on Earth and has been exceedingly arid for millions of years. These conditions create the perfect natural laboratory for assessing life at the extremes of habitability. All known life needs water; however, the extraordinarily dry Atacama Desert is inhabited by well-adapted microorganisms capable of colonizing this hostile environment. I show field and laboratory evidence of an environmental process, water vapor adsorption, that provides a daily, sustainable input of water into the near (3 - 5 cm) subsurface through water vapor-soil particle interactions. I estimate that this water input may rival the yearly average input of rain in these soils (~2 mm). I also demonstrate, for the first time, that water vapor adsorption is dependent on mineral composition via a series of laboratory water vapor adsorption experiments. The results of these experiments provide evidence that mineral composition, and ultimately soil composition, measurably and significantly affect the equilibrium soil water content. This suggests that soil microbial communities may be extremely heterogeneous in distribution depending on the distribution of adsorbent minerals. Finally, I present changes in biologically relevant gasses (i.e., H2, CH4, CO, and CO2) over long-duration incubation experiments designed to assess the potential for biological activity in soils collected from a hyperarid region in the Atacama Desert. These long-duration experiments mimicked typical water availability conditions in the Atacama Desert; in other words, the incubations were performed without condensed water addition. The results suggest a potential for methane-production in the live experiments relative to the sterile controls, and thus, for biological activity in hyperarid soils. However, due to the extremely low biomass and extremely low rates of activity in these soils, the methods employed here were unable to provide robust evidence for activity. Overall, the hyperarid regions of the Atacama Desert are an important resource for researchers by providing a window into the environmental dynamics and subsequent microbial responses near the limit of habitability.
ContributorsGlaser, Donald M (Author) / Hartnett, Hilairy E (Thesis advisor) / Anbar, Ariel (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2022
171974-Thumbnail Image.png
Description
The objective of this dissertation is to study the optical and radiative properties of inhomogeneous metallic structures. In the ongoing search for new materials with tunable optical characteristics, porous metals and nanowires provides an extensive design space to engineer its optical response based on the morphology-dependent phenomena.This dissertation firstly discusses

The objective of this dissertation is to study the optical and radiative properties of inhomogeneous metallic structures. In the ongoing search for new materials with tunable optical characteristics, porous metals and nanowires provides an extensive design space to engineer its optical response based on the morphology-dependent phenomena.This dissertation firstly discusses the use of aluminum nanopillar array on a quartz substrate as spectrally selective optical filter with narrowband transmission for thermophotovoltaic systems. The narrow-band transmission enhancement is attributed to the magnetic polariton resonance between neighboring aluminum nanopillars. Tuning of the resonance wavelengths for selective filters was achieved by changing the nanopillar geometry. It concludes by showing improved efficiency of Gallium-Antimonide thermophotovoltaic system by coupling the designed filter with the cell. Next, isotropic nanoporous gold films are investigated for applications in energy conversion and three-dimensional laser printing. The fabricated nanoporous gold samples are characterized by scanning electron microscopy, and the spectral hemispherical reflectance is measured with an integrating sphere. The effective isotropic optical constants of nanoporous gold with varying pore volume fraction are modeled using the Bruggeman effective medium theory. Nanoporous gold are metastable and to understand its temperature dependent optical properties, a lab-scale fiber-based optical spectrometer setup is developed to characterize the in-situ specular reflectance of nanoporous gold thin films at temperatures ranging from 25 to 500 oC. The in-situ and the ex-situ measurements suggest that the ii specular, diffuse, and hemispherical reflectance varies as a function of temperature due to the morphology (ligament diameter) change observed. The dissertation continues with modeling and measurements of the radiative properties of porous powders. The study shows the enhanced absorption by mixing porous copper to copper powder. This is important from the viewpoint of scalability to get end products such as sheets and tubes with the requirement of high absorptance that can be produced through three-dimensional printing. Finally, the dissertation concludes with recommendations on the methods to fabricate the suggested optical filters to improve thermophotovoltaic system efficiencies. The results presented in this dissertation will facilitate not only the manufacturing of materials but also the promising applications in solar thermal energy and optical systems.
ContributorsRamesh, Rajagopalan (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Thesis advisor) / Phelan, Patrick (Committee member) / Yu, Hongbin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023
190894-Thumbnail Image.png
Description
Energy storage technologies are essential to overcome the temporal variability in renewable energy. The primary aim of this thesis is to develop reactor solutions to better analyze the potential of thermochemical energy storage (TCES) using non-stoichiometric metal oxides, for the multi-day energy storage application. A TCES system consists of a

Energy storage technologies are essential to overcome the temporal variability in renewable energy. The primary aim of this thesis is to develop reactor solutions to better analyze the potential of thermochemical energy storage (TCES) using non-stoichiometric metal oxides, for the multi-day energy storage application. A TCES system consists of a reduction reactor and an insulated MOx storage bin. The reduction reactor heats (to ~ 1100 °C) and partially reduces the MOx, thereby adding sensible and chemical energy (i.e., charging it) under reduced pO2 environments (~10 Pa). Inert gas removes the oxygen generated during reduction. The storage bin holds the hot and partially reduced MOx (typically particles) until it is used in an energy recovery device (i.e., discharge). Irrespective of the reactor heat source (here electrical), or the particle-inert gas flows (here countercurrent), the thermal reduction temperature and inert gas (here N2) flow minimize when the process approaches reversibility, i.e., operates near equilibrium. This study specifically focuses on developing a reduction reactor based on the theoretical considerations for approaching reversibility along the reaction path. The proposed Zigzag flow reactor (ZFR) is capable of thermally reducing CAM28 particles at temperatures ~ 1000 °C under an O2 partial pressure ~ 10 Pa. The associated analytical and numerical models analyze the reaction equilibrium under a real (discrete) reaction path and the mass transfer kinetic conditions necessary to approach equilibrium. The discrete equilibrium model minimizes the exergy destroyed in a practical reactor and identifies methods of maximizing the energy storage density () and the exergetic efficiency. The mass transfer model analyzes the O2 N2 concentration boundary layers to recommend sizing considerations to maximize the reactor power density. Two functional ZFR prototypes, the -ZFR and the -ZFR, establish the proof of concept and achieved a reduction extent, Δδ = 0.071 with CAM28 at T~950 °C and pO2 = 10 Pa, 7x higher than a previous attempt in the literature. The -ZFR consistently achieved  > 100 Wh/kg during >10 h. runtime and the -ZFR displayed an improved  = 130 Wh/kg during >5 h. operation with CAM28. A techno-economic model of a grid-scale ZFR with an associated storage bin analyzes the cost of scaling the ZFR for grid energy storage requirements. The scaled ZFR capital costs contribute < 1% to the levelized cost of thermochemical energy storage, which ranges from 5-20 ¢/kWh depending on the storage temperature and storage duration.
ContributorsGhotkar, Rhushikesh (Author) / Milcarek, Ryan (Thesis advisor) / Ermanoski, Ivan (Committee member) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2023
189340-Thumbnail Image.png
Description
As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering.

As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering. This work demonstrates how traditional networks can be used to study generational events, how these networks can be supplemented with low-cost sensors, and the effectiveness of several control measures. First, an existing network was used to study the effect of COVID-19 travel restrictions on air quality in Maricopa County, Arizona, which would not have been possible without the historical record that a traditional network provides. Although this study determined that decreases in CO and NO2 were not unique to the travel restrictions, it was limited to only three locations due to network sparseness. The second part of this work expanded the traditional NO2 monitoring network using low-cost sensors, that were first collocated with a reference monitor to evaluate their performance and establish a robust calibration. The sensors were then deployed to the field to varying results; their calibration was further improved by cycling the sensors between deployment and reference locations throughout the summer. This calibrated NO2 data, along with volatile organic compound data, were combined to enhance the understanding of ozone formation in Maricopa County, especially during wildfire season. In addition to being in non-attainment for ozone standards, Maricopa County fails to meet particulate matter under 10 μm (PM10) standards. A large portion of PM10 emissions is attributed to fugitive dust that is either windblown or kicked up by vehicles. The third part of this work demonstrated that Enzyme Induced Carbonate Precipitation (EICP) treatments aggregate soil particles and prevent fugitive dust emissions. The final part of the work examined tire wear PM10 emissions, as vehicles are another significant contributor to PM10. Observations showed a decrease in tire wear PM10 during winter with little change when varying the highway surface type.
ContributorsMiech, Jason Andrew (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2023
189350-Thumbnail Image.png
Description
The prevalence and unique properties of airborne nanoparticles have raised concerns regarding their potential adverse health effects. Despite their significance, the understanding of nanoparticle generation, transport, and exposure remains incomplete. This study first aimed to assess nanoparticle exposure in indoor workplace environments, in the semiconductor manufacturing industry. On-site observations during

The prevalence and unique properties of airborne nanoparticles have raised concerns regarding their potential adverse health effects. Despite their significance, the understanding of nanoparticle generation, transport, and exposure remains incomplete. This study first aimed to assess nanoparticle exposure in indoor workplace environments, in the semiconductor manufacturing industry. On-site observations during tool preventive maintenance revealed a significant release of particles smaller than 30 nm, which subsequent instrumental analysis confirmed as predominantly composed of transition metals. Although the measured mass concentration levels did not exceed current federal limits, it prompted concerns regarding how well filter-based air sampling methods would capture the particles for exposure assessment and how well common personal protective equipment would protect from exposure. To address these concerns, this study evaluated the capture efficiency of filters and masks. When challenged by aerosolized engineered nanomaterials, common filters used in industrial hygiene sampling exhibited capture efficiencies of over 60%. Filtering Facepiece Respirators, such as the N95 mask, exhibited a capture efficiency of over 98%. In contrast, simple surgical masks showed a capture efficiency of approximately 70%. The experiments showed that face velocity and ambient humidity influence capture performance and mostly identified the critical role of mask and particle surface charge in capturing nanoparticles. Masks with higher surface potential exhibited higher capture efficiency towards nanoparticles. Eliminating their surface charge resulted in a significantly diminished capture efficiency, up to 43%. Finally, this study characterized outdoor nanoparticle concentrations in the Phoenix metropolitan area, revealing typical concentrations on the order of 10^4 #/cm3 consistent with other urban environments. During the North American monsoon season, in dust storms, with elevated number concentrations of large particles, particularly in the size range of 1-10 μm, the number concentration of nanoparticles in the size range of 30-100 nm was substantially lower by approximately 55%. These findings provide valuable insights for future assessments of nanoparticle exposure risks and filter capture mechanisms associated with airborne nanoparticles.
ContributorsZhang, Zhaobo (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Shock, Everett (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2023
172014-Thumbnail Image.png
Description
A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from

A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from the cooling/heating system, air exchange associated with exfiltration and relief air, and heat transfer between the building envelope and surroundings. Several recent studies show that the building envelope generates more heat release into the environment than any other building component.Current advancements in material science have enabled the development of materials and coatings with very high solar reflectance and thermal emissivity, and that can alter their radiative properties based on surface temperature. This dissertation is an effort to quantify the impact of recent developments in such technologies on urban air. The current study addresses three specific unresolved topics: 1) the relative importance of rooftop solar reflectance and thermal emissivity, 2) the role of rooftop radiative properties in different climates, and 3) the impact of temperature-adaptive exterior materials/coatings on building energy savings and urban cooling. The findings from this study show that the use of rooftop materials with solar reflectance above 0.9 maintain the surface temperature below ambient air temperature most of the time, even when the materials have conventional thermal emissivity (0.9). This research has demonstrated that for hot cities, rooftops with high solar reflectance and thermal emittance maximize building energy savings and always cool the surrounding air. For moderate climate regions, high solar reflectance and low thermal emittance result in the greatest building energy cost savings. This combination of radiative properties cools the air during the daytime and warms it at night. Finally, this research found that temperature-adaptive materials could play a significant role in reducing utility costs for poorly insulated buildings, but that they heat the surrounding air in the winter, irrespective of the rooftop insulation. Through the detailed analysis of building façade radiative properties, this dissertation offers climate-specific design guidance that can be used to simultaneously optimize energy costs while minimizing adverse warming of the surrounding environment.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Sailor, David (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Yeom, Dongwoo Jason (Committee member) / Arizona State University (Publisher)
Created2022