Matching Items (57)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
141461-Thumbnail Image.png
Description
In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they

In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they typically require additional training (for example, scholars have to learn how to use the command line) or are difficult to automate without programming skills. The Giles Ecosystem is a distributed system based on Apache Kafka that allows users to upload documents for text and image extraction. The system components are implemented using Java and the Spring Framework and are available under an Open Source license on GitHub (https://github.com/diging/).
ContributorsLessios-Damerow, Julia (Contributor) / Peirson, Erick (Contributor) / Laubichler, Manfred (Contributor) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2017-09-28
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01
134136-Thumbnail Image.png
Description
Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes.

Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes. There are a variety of methods, or assays, to detect biomarkers, but the most common assay is enzyme-linked immunosorbent assay (ELISA). A new-generation assay termed mass spectrometric immunoassay (MSIA) can measure proteoforms, the different chemical variations of proteins, and their relative abundance. ELISA on the other hand measures the overall concentration of protein in the sample. Measuring each of the proteoforms of a protein is important because only one or two variations could be biologically significant and/or cause diseases. However, running MSIA is expensive. For this reason, an alternative plate-based MSIA technique was tested for its ability to detect the proteoforms of a protein called apolipoprotein C-III (ApoC-III). This technique combines the protein capturing procedure of ELISA to isolate the protein with detection in a mass spectrometer. A larger amount of ApoC-III present in the body indicates a considerable risk for coronary heart disease. The precision of the assay is determined on the coefficient of variation (CV). A CV value is the ratio of standard deviation in relation to the mean, represented as a percentage. The smaller the percentage, the less variation the assay has, and therefore the more ability it has to detect subtle changes in the biomarker. An accepted CV would be less than 10% for single-day tests (intra-day) and less than 15% for multi-day tests (inter-day). The plate-based MSIA was started by first coating a 96-well round bottom plate with 2.5 micrograms of ApoC-III antibody. Next, a series of steps were conducted: a buffer wash, then the sample incubation, followed by another buffer wash and two consecutive water washes. After the final wash, the wells were filled with a MALDI matrix, then spotted onto a gold plate to dry. The dry gold target was then placed into a MALDI-TOF mass spectrometer to produce mass spectra for each spot. The mass spectra were calibrated and the area underneath each of the four peaks representing the ApoC-III proteoforms was exported as an Excel file. The intra-day CV values were found by dividing the standard deviation by the average relative abundance of each peak. After repeating the same procedure for three more days, the inter-day CVs were found using the same method. After completing the experiment, the CV values were all within the acceptable guidelines. Therefore, the plate-based MSIA is a viable alternative for finding proteoforms than the more expensive MSIA tips. To further validate this, additional tests will need to be conducted with different proteins and number of samples to determine assay flexibility.
ContributorsTieu, Luc (Author) / Borges, Chad (Thesis director) / Nedelkov, Dobrin (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
129567-Thumbnail Image.png
Description

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

ContributorsTrenchevska, Olgica (Author) / Phillips, David A. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-06-23
129259-Thumbnail Image.png
Description

What's a profession without a code of ethics? Being a legitimate profession almost requires drafting a code and, at least nominally, making members follow it. Codes of ethics (henceforth “codes”) exist for a number of reasons, many of which can vary widely from profession to profession - but above all

What's a profession without a code of ethics? Being a legitimate profession almost requires drafting a code and, at least nominally, making members follow it. Codes of ethics (henceforth “codes”) exist for a number of reasons, many of which can vary widely from profession to profession - but above all they are a form of codified self-regulation. While codes can be beneficial, it argues that when we scratch below the surface, there are many problems at their root. In terms of efficacy, codes can serve as a form of ethical window dressing, rather than effective rules for behavior. But even more that, codes can degrade the meaning behind being a good person who acts ethically for the right reasons.

Created2013-11-30