Matching Items (238)
Description
This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant

This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant to actuator design.
ContributorsNoe, Cameron Scott (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137083-Thumbnail Image.png
Description
A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory

A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory analysis is needed before the reporter cell line is ready for high-throughput screening at the NIH and lead compound selection.
ContributorsCusimano, Joseph Michael (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Mehta, Shwetal (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137735-Thumbnail Image.png
Description
The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral

The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral response in T1D patients using our innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA). In this study, each viral gene was individually captured using various PCR based techniques, cloned into a protein expression vector, and assembled as the first version of T1D viral protein array. Humoral responses of IgG, IgA, and IgM were examined. Although each class of immunoglobulin generated a wide-range of reactivity, responses to various viral proteins from different proteins were observed. In summary, we captured most of the T1D related viral genes, established viral protein expression on the protein array, and displayed the serum response on the viral protein array. The successful progress will help to fulfill the long term goal of testing the viral infection hypothesis in T1D development.
ContributorsDavis, Amy Darlene (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Desi, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137769-Thumbnail Image.png
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137748-Thumbnail Image.png
Description
I worked on the human-machine interface to improve human physical capability. This work was done in the Human Oriented Robotics and Control Lab (HORC) towards the creation of an advanced, EMG-controlled exoskeleton. The project was new, and any work on the human- machine interface needs the physical interface itself. So

I worked on the human-machine interface to improve human physical capability. This work was done in the Human Oriented Robotics and Control Lab (HORC) towards the creation of an advanced, EMG-controlled exoskeleton. The project was new, and any work on the human- machine interface needs the physical interface itself. So I designed and fabricated a human-robot coupling device with a novel safety feature. The validation testing of this coupling proved very successful, and the device was granted a provisional patent as well as published to facilitate its spread to other human-machine interface applications, where it could be of major benefit. I then employed this coupling in experimentation towards understanding impedance, with the end goal being the creation of an EMG-based impedance exoskeleton control system. I modified a previously established robot-to-human perturbation method for use in my novel, three- dimensional (3D) impedance measurement experiment. Upon execution of this experiment, I was able to successfully characterize passive, static human arm stiffness in 3D, and in doing so validated the aforementioned method. This establishes an important foundation for promising future work on understanding impedance and the creation of the proposed control scheme, thereby furthering the field of human-robot interaction.
ContributorsO'Neill, Gerald D. (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137749-Thumbnail Image.png
Description
In 1937 Canadian neurosurgeon Wilder Penfield made the first to attempt to map the sensorimotor cortex of the human brain in his paper entitled Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. While analogous experimentation had been carried out previously using animal

In 1937 Canadian neurosurgeon Wilder Penfield made the first to attempt to map the sensorimotor cortex of the human brain in his paper entitled Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. While analogous experimentation had been carried out previously using animal subjects, Penfield sought to understand the delicate and complex neuronal pathways that served as the hidden control mechanisms for human activity. The motor homunculus that followed from his findings has been widely accepted as the standard model for the relative spatial representation of the functionality of the motor cortex, and has been virtually unaltered since its inception. While Penfield took measures to collect cortical data in a manner as accurately as scientifically possible for the time period, his original model is deserving of further analysis using modern techniques. This study uses functional magnetic resonance imaging (fMRI) to quantitatively determine motor function volumes and spatial relationships for four motor tasks: toe, finger, eyebrow, and tongue. Although Penfield's general representation of the superior-to-inferior spatial distribution of the motor cortex was replicated with reasonable accuracy, relative mean task volumes seem to differ from Penfield's original model. The data was first analyzed in each individual patient's native anatomical space for task comparison within a single subject. The volumes of the motor cortex devoted to the eyebrow and toe tasks, which comprise only small portions of the Penfield homunculus, are shown to be relatively large in their fMRI representation compared to finger and tongue. However, these tasks have large deviation values, indicating a lack of consistency in task volume size among patients. Behaviorally, toe movement may include whole foot movement in some individuals, and eyebrows may include face movement, causing distributions that are more widespread. The data was then analyzed in the Montreal Neurological Institute (MNI) space, which is mathematically normalized for task comparison between different subjects. Tongue and finger tasks were the largest in volume, much like Penfield's model. However, they also had substantial deviation, again indicating task volume size inconsistencies. Since the Penfield model is only a qualitative spatial evaluation of motor function along the precentral gyrus, numerical deviation from the model cannot necessarily be quantified. Hence, the results of this study can be interpreted standalone without a current comparison. While future research will serve to further validate these distances and volumes, this quantitative model of the functionality of the motor cortex will be of great utility for future neurological research and during preoperative evaluations of neurosurgical patients.
ContributorsOland, Gabriel Lee (Author) / Frakes, David (Thesis director) / Santello, Marco (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05