Matching Items (104)
171757-Thumbnail Image.png
Description
Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the

Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the COVID-19 pandemic, 2) determined which participant characteristics predicted meditation app usage in the first eight weeks after subscribing, and 3) determined if changes in stress, anxiety, and depressive symptoms from baseline to Week 8 predicted meditation app usage from Weeks 8-16. In Manuscript 1, a survey was distributed to Calm subscribers in March 2020 that assessed meditation app behavior and meditation habit strength, and demographic information. Cox proportional hazards regression models were estimated to assess time to app abandonment. In Manuscript 2, new Calm subscribers completed a baseline survey on participants’ demographic and baseline mental health information and app usage data were collected over 8 weeks. In Manuscript 3, new Calm subscribers completed a baseline and Week 8 survey on demographic and mental health information. App usage data were collected over 16 weeks. Regression models were used to assess app usage for Manuscripts 2 and 3. Findings from Manuscript 1 suggest meditating after an existing routine decreased risk of app abandonment for pre-pandemic subscribers and for pandemic subscribers. Additionally, meditating “whenever I can” decreased risk of abandonment among pandemic subscribers. No behavioral factors were significant predictors of app abandonment among the long-term subscribers. Findings from Manuscript 2 suggest men had more days of meditation than women. Mental health diagnosis increased average daily meditation minutes. Intrinsic motivation for meditation increased the likelihood of completing any meditation session, more days with meditation sessions, and more average daily meditation minutes. Findings from Manuscript 3 suggest improvements in stress increased average daily meditation minutes. Improvements in depressive symptoms decreased daily meditation minutes. Evidence from this three-manuscript dissertation suggests meditation cue, time of day, motivation, symptom changes, and demographic and socioeconomic variables may be used to predict meditation app usage.
ContributorsSullivan, Mariah (Author) / Stecher, Chad (Thesis advisor) / Huberty, Jennifer (Committee member) / Buman, Matthew (Committee member) / Larkey, Linda (Committee member) / Chung, Yunro (Committee member) / Arizona State University (Publisher)
Created2022
171501-Thumbnail Image.png
Description
Young adult collegiate women, particularly students with adverse childhood experiences (ACEs) and who have experienced intimate partner violence (IPV) victimization, report a myriad of adverse mental health and academic difficulties. Practicing yoga has demonstrated promising findings among adults as a healing modality in the aftermath of interpersonal violence victimization and

Young adult collegiate women, particularly students with adverse childhood experiences (ACEs) and who have experienced intimate partner violence (IPV) victimization, report a myriad of adverse mental health and academic difficulties. Practicing yoga has demonstrated promising findings among adults as a healing modality in the aftermath of interpersonal violence victimization and traumatization. Less known are the associations between collegiate women’s yoga participation and their mental health, body connection, and academic well-being examined through a yoga feminist- trauma conceptual framework. Among young adult collegiate women, this study examined (1) associations amongst socio-demographics, mental health service use, IPV types, and yoga participation (2) the strength and direction of associations on measures of ACEs, mental health, body connection, and academic well-being, (3) whether yoga participation predicted students’ mental health, body connection, and academic well-being after controlling for confounding variables, including ACEs and IPV victimization, and (4) whether socio-demographics, mental health service use, ACEs, and IPV types predicted yoga participation. This study was observational, cross-sectional, and gathered self-report quantitative data. Eligible participants were current collegiate women enrolled at an urban, public university in the southwestern United States who were 18 to 24 years of age. The main sub-sample (n = 93) included students who were ever in an intimate relationship and practiced yoga within the past year. IRB approval was obtained. Findings demonstrated that yoga participation was not a significant predictor of students’ mental health, body connection, or academic well-being. Socio-demographics, mental health service use, ACEs, and IPV did not predict yoga participation. However, women with greater ACEs fared worse on measures of mental health (i.e., depression and post-traumatic stress disorder symptoms), and women with experiences of IPV harassment reported greater post-traumatic stress disorder symptoms. Further, employed women reported fewer depression symptoms and were less likely to experience emotional IPV. Lastly, students with greater body connection (more awareness) fared better academically. This research supports prior literature on the adverse mental health outcomes among young adult collegiate women with histories of interpersonal violence. Further examination is warranted into employment and body connection, particularly related to yoga, as protective factors of students' health, safety, and academic well-being.
ContributorsKappas Mazzio, Andrea Alexa (Author) / Messing, Jill T (Thesis advisor) / Mendoza, Natasha (Committee member) / Huberty, Jennifer (Committee member) / Arizona State University (Publisher)
Created2022
171888-Thumbnail Image.png
Description
Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of

Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of the predicted robustness of CD8+ T cell responses in 23 different populations. The robustness of CD8+ T cell responses in a given population was modeled by predicting the efficiency of endemic MHC-I protein variants to present peptides derived from SARS-CoV-2 proteins to circulating T cells. To accomplish this task, an algorithm, called EnsembleMHC, was developed to predict viral peptides with a high probability of being recognized by CD T cells. It was discovered that there was significant variation in the efficiency of different MHC-I protein variants to present SARS-CoV-2 derived peptides, and countries enriched with variants with high presentation efficiency had significantly lower mortality rates. Second, a biophysics-based MHC-I peptide prediction algorithm was developed. The MHC-I protein is the most polymorphic protein in the human genome with polymorphisms in the peptide binding causing striking changes in the amino acid compositions, or binding motifs, of peptide species capable of stable binding. A deep learning model, coined HLA-Inception, was trained to predict peptide binding using only biophysical properties, namely electrostatic potential. HLA-Inception was shown to be extremely accurate and efficient at predicting peptide binding motifs and was used to determine the peptide binding motifs of 5,821 MHC-I protein variants. Finally, the impact of stalk glycosylations on NL63 protein dynamics was investigated. Previous data has shown that coronavirus crown glycans play an important role in immune evasion and receptor binding, however, little is known about the role of the stalk glycans. Through the integration of computational biology, experimental data, and physics-based simulations, the stalk glycans were shown to heavily influence the bending angle of spike protein, with a particular emphasis on the glycan at position 1242. Further investigation revealed that removal of the N1242 glycan significantly reduced infectivity, highlighting a new potential therapeutic target. Overall, these investigations and associated innovations in integrative modeling.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis advisor) / Singharoy, Abhishek (Thesis advisor) / Woodbury, Neal (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2022
191019-Thumbnail Image.png
Description
This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and

This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and synthesis. Photoinhibition leads to the dissipation energy and lower yield, and is a major obstacle to preventing green energy from competing with fossil fuels. However, the urgent need for alternative energy sources is driven by soaring energy consumption and rising atmospheric carbon dioxide levels. When developed, MEPS can contribute to a carbon capture technology while helping with energy demands. It is thought that if PSII electron flux can be replaced with an alternative source photosynthesis could be enhanced for more effective production. MEPS has the potential to address these challenges by serving as a carbon capture technology while meeting energy demands. The idea is to replace PSII electron flux with an alternative source, which can be enhanced for higher yields in light intensities not tolerated with PSII. This research specifically focuses on creating the initiation of electron flux between the cathode and the MEPS cells while controlling and measuring the system in real time. The successful proof-of-concept work shows that MEPS can indeed generate high-light-dependent current at intensities up to 2050 µmol photons m^‒2 s^‒1, delivering 113 µmol electrons h^‒1 mg-chl^‒1. The results were further developed to characterize redox tuning for electron delivery of flux to the photosynthetic electron transport chain and redox-based kinetic analysis to model the limitations of the MEPS system.
ContributorsLewis, Christine Michelle (Author) / Torres, César I (Thesis advisor) / Fromme, Petra (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2023
160098-Thumbnail Image.png
Description

The purpose of this study was to determine the feasibility of a mindfulness-based intervention among pregnant women (12-20 weeks’ gestation) using a mobile meditation app, Calm. This study involved 100 participants who were recruited nationally due to the COVID-19 pandemic. This study was reviewed and approved by the Institutional Review

The purpose of this study was to determine the feasibility of a mindfulness-based intervention among pregnant women (12-20 weeks’ gestation) using a mobile meditation app, Calm. This study involved 100 participants who were recruited nationally due to the COVID-19 pandemic. This study was reviewed and approved by the Institutional Review Board of Arizona State University (STUDY STUDY00010467). All participants were provided an informed consent document and provided electronic consent prior to enrollment and participation in this study. This study was a randomized, controlled trial (trial registration: ClinicalTrials.gov NCT04264910). Participants randomized to the intervention group were asked to participate in a minimum of 10 minutes of daily meditation using a mindfulness meditation mobile app (i.e., Calm) for the duration of their pregnancy. Participants randomized to the standard of care control group were given access to the app after they gave birth. Both the intervention and control groups were administered surveys that measured feasibility outcomes, perceived stress, mindfulness, self-compassion, impact from COVID-19, pregnancy-related anxiety, depression, emotional regulation, sleep, and childbirth experience at four time points: baseline (12-20 weeks gestation), midline (24 weeks gestation), postintervention (36 weeks gestation), and follow-up survey (3-5 weeks postpartum). Data is currently being analyzed for publication.

ContributorsLister, Haily (Author) / Huberty, Jennifer (Thesis director) / Larkey, Linda (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156759-Thumbnail Image.png
Description
College students experience a considerable amount of stress. Unmanaged stress is associated with poor academic performance, health risk behaviors (i.e., inadequate sleep and physical activity, alcohol consumption, poor dietary behaviors), and poor mental health. Coping with stress has become a priority among universities. The most tested stress-related programs to date

College students experience a considerable amount of stress. Unmanaged stress is associated with poor academic performance, health risk behaviors (i.e., inadequate sleep and physical activity, alcohol consumption, poor dietary behaviors), and poor mental health. Coping with stress has become a priority among universities. The most tested stress-related programs to date have been mindfulness-based and face-to-face. These programs demonstrated significant improvements in stress, mindfulness, and self-compassion among college students. However, they may be burdensome to students as studies report low attendance and low compliance due to class conflicts or not enough time. Few interventions have used more advanced technologies (i.e., mobile apps) as a mode of delivery. The purpose of this study is to report adherence to a consumer-based mindfulness meditation mobile application (i.e., Calm) and test its effects on stress, mindfulness, and self-compassion in college students. We will also explore what the relationship is between mindfulness and health behaviors.

College students were recruited using fliers on college campus and social media. Eligible participants were randomized to one of two groups: (1) Intervention - meditate using Calm, 10 min/day for eight weeks and (2) Control – no participation in mindfulness practices (received the Calm application after 12-weeks). Stress, mindfulness, and self-compassion and health behaviors (i.e., sleep disturbance, alcohol consumption, physical activity, fruit and vegetable consumption) were measured using self-report. Outcomes were measured at baseline and week eight.

Of the 109 students that enrolled in the study, 41 intervention and 47 control participants were included in analysis. Weekly meditation participation averaged 38 minutes with 54% of participants completing at least half (i.e., 30 minutes) of meditations. Significant changes between groups were found in stress, mindfulness, and self-compassion (all P<0.001) in favor of the intervention group. A significant negative association (p<.001) was found between total mindfulness and sleep disturbance.

An eight-week consumer-based mindfulness meditation mobile application (i.e., Calm) was effective in reducing stress, improving mindfulness and self-compassion among undergraduate college students. Mobile applications may be a feasible, effective, and less burdensome way to reduce stress in college students.
ContributorsGlissmann, Christine (Author) / Huberty, Jennifer (Thesis advisor) / Sebren, Ann (Committee member) / Larkey, Linda (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2018
156515-Thumbnail Image.png
Description
The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed

The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed to study the photophysics of these BODIPY dyes in the micellar environments. Amphiphilic polymers with a hydrophobic character and low Critical Micelle Concentration (CMC) protected BODIPYS from the aqueous environment. Moderate dye loading conditions did not result in ground-state dimerization, and only fluorescence lifetimes and brightnesses were affected. However, amphiphilic polymers with a hydrophilic character and high CMC did not protect the BODIPYS from the aqueous environment with concomitant ground-state dimerization and quenching of the fluorescence intensity, lifetime, and brightnesses even at low dye loading conditions. At the doubly-labeled interfaces of Escherichia coli (E. coli) DNA processivity β clamps, the interchromophric interactions of four rhodamine dyes were studied: tetramethylrhodamine (TMR), TMR C6, Alexa Fluor 488, and Alexa Fluor 546. Absorbance and fluorescence measurements were performed on doubly-labeled β clamps with singly-labeled β clamps and free dyes as controls. The absorbance measurements revealed that both TMR and TMR C6 readily formed H-dimers (static quenching) at the doubly-labeled interfaces of the β clamps. However, the TMR with a longer linker (TMR C6) also displayed a degree of dynamic quenching. For Alexa Fluor 546 and Alexa Fluor 488, there were no clear signs of dimerization in the absorbance scans. However, the fluorescence properties (fluorescence intensity, lifetime, and anisotropy) of the Alexa Fluor dyes significantly changed when three methodologies were employed to disrupt the doubly-labeled interfaces: 1) the addition of sodium dodecyl sulfate (SDS) detergent to denature the proteins, 2) the addition of clamp loader (γ complex) to open one of the two interfaces, and 3) the use of subunit exchange to decrease the number of dyes per interface. These fluorescence measurements indicated that for the Alexa Fluor dyes, other interchromophoric interactions were present such as dynamic quenching and homo-Förster Resonance Energy Transfer (homo-FRET).
ContributorsDonaphon, Bryan Matthew (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2018
157213-Thumbnail Image.png
Description
The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to

The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to the nucleic acid devices. The applications of nucleic acids greatly relies on the bio-reactivity and specificity when applied to highly complexed biological systems.

This dissertation aims to 1) develop new strategy to identify high affinity nucleic acid aptamers against biological ligand; and 2) explore highly orthogonal RNA riboregulators in vivo for constructing multi-input gene circuits with NOT logic. With the aid of a DNA nanoscaffold, pairs of hetero-bivalent aptamers for human alpha thrombin were identified with ultra-high binding affinity in femtomolar range with displaying potent biological modulations for the enzyme activity. The newly identified bivalent aptamers enriched the aptamer tool box for future therapeutic applications in hemostasis, and also the strategy can be potentially developed for other target molecules. Secondly, by employing a three-way junction structure in the riboregulator structure through de-novo design, we identified a family of high-performance RNA-sensing translational repressors that down-regulates gene translation in response to cognate RNAs with remarkable dynamic range and orthogonality. Harnessing the 3WJ repressors as modular parts, we integrate them into biological circuits that execute universal NAND and NOR logic with up to four independent RNA inputs in Escherichia coli.
ContributorsZhou, Yu (Ph.D.) (Author) / Yan, Hao (Thesis advisor) / Green, Alexander (Thesis advisor) / Woodbury, Neal (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
154031-Thumbnail Image.png
Description
Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child

Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child physical activity levels, yet these efforts have not yielded consistent results. The purpose of this study was to assess the preliminary effects of a community-based intervention on light physical activity and MVPA among 6-11 year old children. Methods: The present study was part of a larger study called Athletes for Life [AFL], a family-based, nutrition-education and physical activity intervention. The present study focused on physical activity data from the first completed cohort of participants (n=29). This study was a randomized control trial in which participating children were randomized into a control (n=14) or intervention (n=15) group. Participants wore accelerometers at two time points. Intervention strategies were incorporated to increase child habitual physical activity. Analyses of covariance were performed to test for post 12-week differences between both groups on the average minutes of light physical activity and MVPA minutes per day.

Results: The accelerometer data demonstrated no significant difference in light physical activity or MVPA mean minutes per day between the groups. Few children reported engaging in activities sufficient for meeting the physical activity guidelines outside the AFL program. Of the 119 total distributed child physical activity tracker sheets (7 per family), 55 were returned. Of the 55 returned physical activity tracker sheets, parents reported engaging in physical activity with their children only 7 times outside of the program over seven weeks.

Conclusion: The combined intervention strategies implemented throughout the 12-week study did not appear to be effective at increasing habitual mean minutes per day spent engaging in light and MVPA among children beyond the directed program. Methodological limitations and low adherence to intervention strategies may partially explain these findings. Further research is needed to test successful strategies within community programs to increase habitual light physical activity and MVPA among 6-11 year old children.
ContributorsQuezada, Blanca (Author) / Crespo, Noe (Thesis advisor) / Huberty, Jennifer (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2015