Matching Items (136)
Filtering by

Clear all filters

128232-Thumbnail Image.png
Description

This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of

This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of real word morphological awareness, pseudoword morphological awareness, and vocabulary knowledge emerged as the best fit and accounted for 79% of the reading comprehension variance. The results indicated that the constructs contributed jointly to reading comprehension; however, vocabulary knowledge was the only potentially unique predictor (p = 0.052), accounting for an additional 5.6% of the variance. This study demonstrates the feasibility of applying a latent variable modeling approach to examine individual differences in the reading comprehension skills of ABE students. Further, this study replicates the findings of Tighe and Schatschneider (2015) on the importance of differentiating among dimensions of morphological awareness in this population.

Created2016-02-04
128707-Thumbnail Image.png
Description

Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis,

Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic) map π from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map π of an organism that optimally trades off the free energy needed to run π with the phenotypic fitness that results from implementing π. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere’s information processing by the flux of sunlight on the Earth.

Created2016-04-13
136221-Thumbnail Image.png
Description

Maricopa County is the home of the Phoenix metropolitan area, an expansive city with serious air quality concerns. To ameliorate air quality in the county, the Maricopa County Air Quality Department developed a website and mobile application called "Clean Air Make More" as a means of outreach and engagement. In

Maricopa County is the home of the Phoenix metropolitan area, an expansive city with serious air quality concerns. To ameliorate air quality in the county, the Maricopa County Air Quality Department developed a website and mobile application called "Clean Air Make More" as a means of outreach and engagement. In doing this, the county has found a way to engender a bilateral relationship between individuals and their government agency. This study analyzes the effectiveness of Clean Air Make More in establishing this relationship and engaging the community in efforts to improve air quality. It concludes that the design of the application effectively meets user needs, but marketing efforts should target populations disposed to taking action regarding air quality.

ContributorsLapoint, Maggie Lane (Author) / Johnston, Erik W., 1977- (Thesis director) / Hondula, David M. (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
141423-Thumbnail Image.png
Description

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion:
We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions:
Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan R. (Author) / Richardson, Molly B. (Author) / Calkins, Mirian M. (Author) / Ebi, Kristie L. (Author) / Gohlke, Julia M. (Author) / Hess, Jeremy J. (Author) / Hondula, David M. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Contributor) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author)
Created2017-08
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
140960-Thumbnail Image.png
Description
In June 2016, the Arizona Department of Health Services (ADHS) with researchers from Arizona State University (ASU) convened a one-day workshop of public health professionals and experts from Arizona’s county and state agencies to advance statewide preparedness for extreme weather events and climate change. The United States Centers for Disease

In June 2016, the Arizona Department of Health Services (ADHS) with researchers from Arizona State University (ASU) convened a one-day workshop of public health professionals and experts from Arizona’s county and state agencies to advance statewide preparedness for extreme weather events and climate change. The United States Centers for Disease Control and Prevention (CDC) sponsors the Climate-Ready Cities and States Initiative, which aims to help communities across the country prepare for and prevent projected disease burden associated with climate change. Arizona is one of 18 public health jurisdictions funded under this initiative. ADHS is deploying the CDC’s five-step Building Resilience Against Climate Effects (BRACE) framework to assist counties and local public health partners with becoming better prepared to face challenges associated with the impacts of climate-sensitive hazards. Workshop participants engaged in facilitated exercises designed to rigorously consider social vulnerability to hazards in Arizona and to prioritize intervention activities for extreme heat, wildfire, air pollution, and flooding.

This report summarizes the proceedings of the workshop focusing primarily on two sessions: the first related to social vulnerability mapping and the second related to the identification and prioritization of interventions necessary to address the impacts of climate-sensitive hazards.
ContributorsRoach, Matthew (Author) / Hondula, David M. (Author) / Putnam, Hana (Author) / Chhetri, Nalini (Author) / Chakalian, Paul (Author) / Watkins, Lance (Author) / Dufour, Brigette (Author)
Created2016-11-28