Matching Items (223)
130350-Thumbnail Image.png
Description

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683)

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649–705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM).

Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

ContributorsGong, Zhen (Author) / Martin Garcia, Jose Manuel (Author) / Daskalova, Sasha (Author) / Craciunescu, Felicia (Author) / Song, Lusheng (Author) / Dorner, Katerina (Author) / Hansen, Debra (Author) / Yang, Jay-How (Author) / LaBaer, Joshua (Author) / Hogue, Brenda (Author) / Mor, Tsafrir (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Innovations in Medicine (Contributor) / Personalized Diagnostics (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-08-21
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
131596-Thumbnail Image.png
Description

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their importance to the pedestrian landscape. With that in mind, the research question for the study is: how does the microclimate of a densifying urban core affect thermal comfort in plazas at different times of the year? Based on the data, I argue that plazas in downtown Tempe are not maximally predisposed to pedestrian thermal comfort in the summer or the fall. Thus, the proposed intervention to improve thermal comfort in downtown Tempe’s plazas is the implementation of decision support tools focused on education, community engagement, and thoughtful building designs for heat safety.

ContributorsCox, Nicole (Author) / Redman, Charles (Thesis director) / Hondula, David M. (Committee member) / School of Social Transformation (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132181-Thumbnail Image.png
Description

Arizona is a unique state in that rain is not a normal occurrence throughout most of the year (NWS). Arizona averages from less than three months to half a month of measurable precipitation days per year (WRCC). With that, it is important to know the public’s understanding as well as

Arizona is a unique state in that rain is not a normal occurrence throughout most of the year (NWS). Arizona averages from less than three months to half a month of measurable precipitation days per year (WRCC). With that, it is important to know the public’s understanding as well as their general trend of likeness towards the weather forecasts they receive. A questionnaire was distributed to 426 people in the state of Arizona to review what they understand from the forecasts and what they would like to see on social media and television.

ContributorsHermansen, Alexis Nicole (Author) / Alvarez, Melanie (Thesis director) / Cerveny, Randall (Committee member) / Hondula, David M. (Committee member) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / School of Geographical Sciences and Urban Planning (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133696-Thumbnail Image.png
Description
The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI

The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI disorders and associated symptoms, implying a role the bacterial and fungal gut microbiota play in maintaining human health. The irregularities in GI symptoms can negatively affect the overall quality of life or even worsen behavioral symptoms the children present. Even with the increase in the availability of next-generation sequencing technologies, the composition and diversities of fungal microbiotas are understudied, especially in the context of ASD. We therefore aimed to investigate the gut mycobiota of 36 neurotypical children and 38 children with ASD. We obtained stool samples from all participants, as well as autism severity and GI symptom scores to help us understand the effect the mycobiome has on these symptoms. By targeting the fungal internal transcribed spacer (ITS) and bacterial 16S rRNA V4 regions, we obtained fungal and bacterial amplicon sequences, from which we investigated the diversities, composition, and potential link between two different ecological clades. From fungal amplicon sequencing results, we observed a significant decrease in the observed fungal OTUs in children with ASD, implying a lack of potentially beneficial fungi in ASD subjects. We performed Bray-Curtis principal coordinates analysis and observed significant differences in fungal microbiota composition between the two groups. Taxonomic analysis showed higher relative abundances of Candida , Pichia, Penicillium , and Exophiala in ASD subjects, yet due to a large dispersion of data, the differences were not statistically significant. Interestingly, we observed a bimodal distribution of Candida abundances within children with ASD. Candida's relative abundance was not significantly correlated with GI scores, but children with high Candida relative abundances presented significantly higher Autism Treatment Evaluation Checklist (ATEC) scores, suggesting a role of Candida on ASD behavioral symptoms. Regarding the bacterial gut microbiota, we found marginally lower observed OTUs and significantly lower relative abundance of Prevotella in the ASD group, which was consistent with previous studies. Taken together, we demonstrated that autism is closely linked with a distinct gut mycobiota, characterized by a loss of fungal and bacterial diversity and an altered fungal and bacterial composition.
ContributorsPatel, Jigar (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Kang, Dae Wook (Committee member) / Adams, James (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134050-Thumbnail Image.png
Description
The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented

The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented by negative values for oxidation-reduction potential (ORP), which can be maintained through the addition of reducing agents such as ZVI, or to a lesser extent, the fermentation of added substrates such as lactate. Microcosm conditions represented distance from an in-situ treatment injection well and contained different types of iron species and dechlorinating bioaugmentation cultures. Diminishing efficacy of microbial reductive dechlorination along a gradient away from the injection zone was observed, characterized by increasing ORP and decreasing pH. Results also suggested that the use of particular biostimulation substrates is key to prioritizing the dechlorination reaction against competing microbial and abiotic processes by supplying electrons needed for microbial dechlorination.
ContributorsMouti, Aatikah (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12