Matching Items (38)
128539-Thumbnail Image.png
Description

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

ContributorsWang, Le-Zhi (Author) / Su, Riqi (Author) / Huang, Zi-Gang (Author) / Wang, Xiao (Author) / Wang, Wen-Xu (Author) / Grebogi, Celso (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-14
128549-Thumbnail Image.png
Description

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can happen to chimera states under systematic changes to the network structure when links are removed from the network in an orderly fashion but the local coupling topology remains invariant with respect to an index shift. We find the emergence of multicluster chimera states. Remarkably, as a parameter characterizing the amount of link removal is increased, chimera states of distinct numbers of clusters emerge and persist in different parameter regions. We develop a phenomenological theory, based on enhanced or reduced interactions among oscillators in different spatial groups, to explain why chimera states of certain numbers of clusters occur in certain parameter regions. The theoretical prediction agrees well with numerics.

ContributorsYao, Nan (Author) / Huang, Zi-Gang (Author) / Grebogi, Celso (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-09
128495-Thumbnail Image.png
Description

Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We

Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.

ContributorsWang, Guanglei (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-10-17
128511-Thumbnail Image.png
Description

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

ContributorsHan, Xiao (Author) / Shen, Zhesi (Author) / Wang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-07-22
128744-Thumbnail Image.png
Description

Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects - some good and some bad - on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social

Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects - some good and some bad - on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes.

ContributorsGriffin, William (Author) / Li, Xun (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-05-17
128232-Thumbnail Image.png
Description

This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of

This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of real word morphological awareness, pseudoword morphological awareness, and vocabulary knowledge emerged as the best fit and accounted for 79% of the reading comprehension variance. The results indicated that the constructs contributed jointly to reading comprehension; however, vocabulary knowledge was the only potentially unique predictor (p = 0.052), accounting for an additional 5.6% of the variance. This study demonstrates the feasibility of applying a latent variable modeling approach to examine individual differences in the reading comprehension skills of ABE students. Further, this study replicates the findings of Tighe and Schatschneider (2015) on the importance of differentiating among dimensions of morphological awareness in this population.

Created2016-02-04
128707-Thumbnail Image.png
Description

Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis,

Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic) map π from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map π of an organism that optimally trades off the free energy needed to run π with the phenotypic fitness that results from implementing π. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere’s information processing by the flux of sunlight on the Earth.

Created2016-04-13
128669-Thumbnail Image.png
Description

The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L-1 and maximum fucoxanthin concentration of 18.47 mg g-1 were

The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L-1 and maximum fucoxanthin concentration of 18.47 mg g-1 were obtained in cultures grown in a bubble column photobioreactor (Ø 3.0 cm inner diameter), resulting in a fucoxanthin volumetric productivity of 7.96 mg L-1 day-1. A slight reduction in biomass production was observed in the scaling up of O. aurita culture in a flat plate photobioreactor, yet yielded a comparable fucoxanthin volumetric productivity. A rapid method was developed for extraction and purification of fucoxanthin. The purified fucoxanthin was identified as all-trans-fucoxanthin, which exhibited strong antioxidant properties, with the effective concentration for 50% scavenging (EC50) of 1,1-dihpenyl-2-picrylhydrazyl (DPPH) radical and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical being 0.14 and 0.03 mg mL-1, respectively. Our results suggested that O. aurita can be a natural source of fucoxanthin for human health and nutrition.

ContributorsXia, Song (Author) / Wang, Ke (Author) / Wan, Linglin (Author) / Li, Aifen (Author) / Hu, Qiang (Author) / Zhang, Chengwu (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-07-23