Matching Items (149)
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
128744-Thumbnail Image.png
Description

Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects - some good and some bad - on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social

Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects - some good and some bad - on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes.

ContributorsGriffin, William (Author) / Li, Xun (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-05-17
129319-Thumbnail Image.png
Description

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

ContributorsBasu, Soumyadipta (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-19
129185-Thumbnail Image.png
Description

In this work, a selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 0.9 in the UV, visible and, near infrared (IR)

In this work, a selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 0.9 in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 0.2. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350 °C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78% at 100 °C without optical concentration or 80% at 400 °C with 25 suns. The performance could be further improved with better fabrication processes and geometric optimization during metamaterial design. The strong spectral selectivity, favorable diffuse-like behavior, and good thermal stability make the metamaterial selective absorber promising for significantly enhancing solar thermal energy harvesting in various systems at mid to high temperatures.

ContributorsWang, Hao (Author) / Sivan, Vijay Prasad (Author) / Mitchell, Arnan (Author) / Rosengarten, Gary (Author) / Phelan, Patrick (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-01
156144-Thumbnail Image.png
Description
This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In

This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In the first part, amorphous Si anode will be studied. Despite many existing studies

on silicon (Si) anodes for lithium ion batteries (LIBs), many essential questions still exist

on compound formation, composition, and properties. Here it is shown that some

previously accepted findings do not truthfully reflect the actual lithiation mechanisms in

realistic battery configurations. Furthermore the correlation between structure and

mechanical properties in these materials has not been properly established. Here, a rigorous

and thorough study is performed to comprehensively understand the electrochemical

reaction mechanisms of amorphous-Si (a-Si) in a realistic LIB configuration. In-depth

microstructural characterization was performed and correlations were established between

Li-Si composition, volumetric expansion, and modulus/hardness. It is found that the

lithiation process of a-Si in a real battery setup is a single-phase reaction rather than the

accepted two-phase reaction obtained from in-situ TEM experiments. The findings in this

dissertation establish a reference to quantitatively explain many key metrics for lithiated a

Si as anodes in real LIBs, and can be used to rationally design a-Si based high-performance

LIBs guided by high-fidelity modeling and simulations.

In the second part, Li metal anode will be investigated. Problems related to dendrite

growth on lithium metal anodes such as capacity loss and short circuit present major

barriers to the next-generation high-energy-density batteries. The development of

successful mitigation strategies is impeded by the incomplete understanding of the Li

dendrite growth mechanisms. Here the enabling role of plating residual stress in dendrite

initiation through novel experiments of Li electrodeposition on soft substrates is confirmed,

and the observations is explained with a stress-driven dendrite growth model. Dendrite

growth is mitigated on such soft substrates through surface-wrinkling-induced stress

relaxation in deposited Li film. It is demonstrated that this new dendrite mitigation

mechanism can be utilized synergistically with other existing approaches in the form of

three-dimensional (3D) soft scaffolds for Li plating, which achieves superior coulombic

efficiency over conventional hard copper current collectors under large current density.
ContributorsWang, Xu (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Thesis advisor) / Chan, Candace (Committee member) / Wang, Liping (Committee member) / Qiong, Nian (Committee member) / Arizona State University (Publisher)
Created2018
155599-Thumbnail Image.png
Description
Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if

Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions.

The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads’ performance. This meant that the pad’s in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.
ContributorsKemme, Nicholas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
128232-Thumbnail Image.png
Description

This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of

This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of real word morphological awareness, pseudoword morphological awareness, and vocabulary knowledge emerged as the best fit and accounted for 79% of the reading comprehension variance. The results indicated that the constructs contributed jointly to reading comprehension; however, vocabulary knowledge was the only potentially unique predictor (p = 0.052), accounting for an additional 5.6% of the variance. This study demonstrates the feasibility of applying a latent variable modeling approach to examine individual differences in the reading comprehension skills of ABE students. Further, this study replicates the findings of Tighe and Schatschneider (2015) on the importance of differentiating among dimensions of morphological awareness in this population.

Created2016-02-04
128797-Thumbnail Image.png
Description

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

ContributorsFu, Jinglin (Author) / Reinhold, Jeremy (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2011-04-08
128707-Thumbnail Image.png
Description

Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis,

Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic) map π from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map π of an organism that optimally trades off the free energy needed to run π with the phenotypic fitness that results from implementing π. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere’s information processing by the flux of sunlight on the Earth.

Created2016-04-13