Matching Items (1,033)
Filtering by

Clear all filters

150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
149941-Thumbnail Image.png
Description
There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of

There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of labor is known as temporal polyethism. Foragers demonstrate further division of labor with some bees biasing collection towards protein (pollen) and others towards carbohydrates (nectar). The Reproductive Ground-plan Hypothesis proposes that the ovary plays a regulatory role in foraging division of labor. European honey bee workers that have been selectively bred to store larger amounts of pollen (High strain) also have a higher number of ovarioles per ovary than workers from strains bred to store less pollen (Low strain). High strain bees also initiate foraging earlier than Low strain bees. The relationship between ovariole number and foraging behavior is also observed in wild-type Apis mellifera and Apis cerana: pollen-biased foragers have more ovarioles than nectar-biased foragers. In my first study, I investigated the pre-foraging behavioral patterns of the High and Low strain bees. I found that High strain bees progress through the temporal polyethism at a faster rate than Low strain bees. To ensure that the observed relationship between the ovary and foraging bias is not due to associated separate genes for ovary size and foraging behavior, I investigated foraging behavior of African-European backcross bees. The backcross breeding program was designed to break potential gene associations. The results from this study demonstrated the relationship between the ovary and foraging behavior, supporting the proposed causal linkage between reproductive development and behavioral phenotype. The final study was designed to elucidate a regulatory mechanism that links ovariole number with sucrose sensitivity, and loading decisions. I measured ovariole number, sucrose sensitivity and sucrose solution load size using a rate-controlled sucrose delivery system. I found an interaction effect between ovariole number and sucrose sensitivity for sucrose solution load size. This suggests that the ovary impacts carbohydrate collection through modulation of sucrose sensitivity. Because nectar and pollen collection are not independent, this would also impact protein collection.
ContributorsSiegel, Adam J (Author) / Page, Jr., Robert E (Thesis advisor) / Hamilton, Andrew L. (Committee member) / Brent, Colin S (Committee member) / Amdam, Gro V (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2011
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
137869-Thumbnail Image.png
Description
Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each

Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each grade level. This thesis project teaches the practical skills of weather map reading and weather forecasting through the creation and execution of an after school lesson with the aide of seven teen assistants.
ContributorsChoulet, Shayna (Author) / Walters, Debra (Thesis director) / Oliver, Jill (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137870-Thumbnail Image.png
Description
Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).
ContributorsBarron, Kara (Author) / Landrum, Leslie (Thesis director) / Swanson, Tod (Committee member) / Pigg, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137871-Thumbnail Image.png
DescriptionBased on previous research and findings it is proven that a non-profit class to create awareness will be beneficial in the prevention of eating disorders. This analysis will provide significant research to defend the proposed class.
ContributorsAllen, Brittany (Author) / Chung, Deborah (Author) / Fey, Richard (Thesis director) / Peck, Sidnee (Committee member) / Mazurkiewicz, Milena (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013