Matching Items (332)
147543-Thumbnail Image.png
Description

The following is a review of the literature on Equine Assisted Psychotherapy (EAP) as a potential treatment for US service members with Post-Traumatic Stress Disorder(PTSD). EAP is a relatively new and undeclared psychotherapeutic technique that presents limitless opportunities for holistic growth in patients who have Post-Traumatic Stress Disorder (PTSD)

The following is a review of the literature on Equine Assisted Psychotherapy (EAP) as a potential treatment for US service members with Post-Traumatic Stress Disorder(PTSD). EAP is a relatively new and undeclared psychotherapeutic technique that presents limitless opportunities for holistic growth in patients who have Post-Traumatic Stress Disorder (PTSD) who have not achieved an improvement in their quality of life as a result of other conventional treatments. Due to its heterogenous nature, PTSD directly dismantles the brain’s reward circuitry pathway, altering the individual’s capacity for emotional resolution. For US veterans suffering from PTSD who have not received palpable improvements through traditional talk therapies, EAP is a treatment for emotional vulnerability and communal reintegration when used in conjunction with techniques of attachment theory and cognitive-behavioral theory. Previous studies show an uptick in interpersonal trust and an alleviation of maladaptive defensive mechanisms set in place by the individual to protect the psyche. Research is indicative of an alleviation in overall symptomatology with an emphasis in the rehearsal of therapeutic strategies within interpersonal relationships to rehabilitate social engagement and cognition. Due to the lack of foundational acceptance of EAP thus far as a treatment for PTSD, it is challenging to ascertain a marginalized understanding of the holistic effects of EAP on PTSD as a stand alone psychotherapeutic treatment.

ContributorsThompson, Kylee Shae (Author) / Jimenez, Laura (Thesis director) / Murphree, Julie (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147686-Thumbnail Image.png
Description

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated passing and shooting appear to facilitate accuracy. This study tests if shooting baskets “in rhythm,” as measured by the catch-to-release time, reliably enhances shooting accuracy. It then tests if an “in rhythm” timing is commonly detected and agreed upon by observers, and if observer timing ratings are related to shooting accuracy. Experiment 1 tests the shooting accuracy of two amateur basketball players after different delays between catching a pass and shooting the ball. Shots were taken from the three-point line (180 shots). All shots were recorded and analyzed for accuracy as a function of delay time, and the recordings were used to select stimuli varying in timing intervals for observers to view in Experiment 2. In Experiment 2, 24 observers each reviewed 17 video clips of the shots to test visual judgment of shooting-in-rhythm. The delay times ranged from 0.3 to 3.2 seconds, with a goal of having some of the shots taken too fast, some close to in rhythm, and some too slow. Observers rated if each shot occurs too fast, in rhythm slightly fast, in rhythm slightly slow, or too slow. In Experiment 1, shooters exhibited a significant cubic fit with better shooting performance in the middle of the timing distribution (1.2 sec optimal delay) between catching a pass and shooting. In Experiment, 2 observers reliably judged shots to be in rhythm centered at 1.1 ± 0.2 seconds, which matched the delay that leads to optimal performance for the shooters found in Experiment 1. The pattern of findings confirms and validates that there is a common “in rhythm” catch-to-shoot delay time of a little over 1 second that both optimizes shooter accuracy and is reliably recognized by observers.

ContributorsFlood, Cierra Elizabeth (Author) / McBeath, Michael (Thesis director) / Corbin, William (Committee member) / Department of Psychology (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141461-Thumbnail Image.png
Description
In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they

In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they typically require additional training (for example, scholars have to learn how to use the command line) or are difficult to automate without programming skills. The Giles Ecosystem is a distributed system based on Apache Kafka that allows users to upload documents for text and image extraction. The system components are implemented using Java and the Spring Framework and are available under an Open Source license on GitHub (https://github.com/diging/).
ContributorsLessios-Damerow, Julia (Contributor) / Peirson, Erick (Contributor) / Laubichler, Manfred (Contributor) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2017-09-28
149368-Thumbnail Image.png
Description
In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on

In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and the green alga, Chlamydomonas reinhardtii were studied. Galdieria sulphuraria grows in extreme habitats such as hot sulfur springs with pH values from 0 to 4 and temperatures up to 56°C. In this study, both membrane protein complexes, PSI and PSII were isolated from this organism and characterized. Ultra-fast fluorescence spectroscopy and electron microscopy studies of PSI-LHCI supercomplexes illustrate how this organism has adapted to low light environmental conditions by tightly coupling PSI and LHC, which have not been observed in any organism so far. This result highlights the importance of structure-function relationships in different ecosystems. Galdieria sulphuraria PSII was used as a model protein to show the amenability of integral membrane proteins to top-down mass spectrometry. G.sulphuraria PSII has been characterized with unprecedented detail with identification of post translational modification of all the PSII subunits. This study is a technology advancement paving the way for the usage of top-down mass spectrometry for characterization of other large integral membrane proteins. The green alga, Chlamydomonas reinhardtii is widely used as a model for eukaryotic photosynthesis and results from this organism can be extrapolated to other eukaryotes, especially agricultural crops. Structural and functional studies on the PSI-LHCI complex of C.reinhardtii grown under high salt conditions were studied using ultra-fast fluorescence spectroscopy, circular dichroism and MALDI-TOF. Results revealed that pigment-pigment interactions in light harvesting complexes are disrupted and the acceptor side (ferredoxin docking side) is damaged under high salt conditions.
ContributorsThangaraj, Balakumar (Author) / Fromme, Petra (Thesis advisor) / Shock, Everett (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010
148393-Thumbnail Image.png
Description

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing conditions into minor annoyances; Some of these afflictions have even become nonexistent or even extinct in certain parts of the world outside of a controlled laboratory setting. With many advancements and overwhelming evidence proving their efficiency, it is clear that vaccines have become nothing less than a necessity for everyday healthcare in today’s world. <br/>The greatest contributor to the creation and evolution of vaccines throughout the years is by far the progress and work done in the field of molecular and cellular biology. These advancements have become the bedrock of modern vaccination, as shown by the differing types of vaccines and their methodology. The most common varieties of vaccines are include ‘dead’ or inactivated vaccines, one such example being the pertussis strain of vaccines, which have either dead or torn apart cells for the body to easily fight off, allowing the immune system to easily and quickly counter the illness; Additionally, there are also live attenuated vaccines (LAVs) in which a weaker version of the pathogen is introduced to the body to stimulate an immune response, or a recombinant mRNA vaccine where mRNA containing the coding for an antigen is presented for immunological response, the latter being what the current COVID-19 vaccines are based on. This is in part aided by the presence of immunological adjuvants, antigens and substances that the immune system can recognize, target, and remember for future infections. However, for more serious illnesses the body needs a bigger threat to analyze, which leads to live vaccines- instead of dead or individual components of a potential pathogen, a weakened version is created in the lab to allow the body to combat it. The idea behind this is the same, but to a larger degree so a more serious illness such as measles, mumps, and rubella (MMR) do not infect us.<br/>However, for the past couple of decades the public’s views on vaccination has greatly varied, with the rise of fear and disinformation leading those to believe that modern medicine is a threat in disguise. The largest of these arguments began in the late 90’s, when Dr. Andrew Wakefield published an article under the Lancet with false information connecting vaccinations to the occurrence of autism in younger children- a theory which has since then been proven incorrect numerous times over. Unfortunately, the rise of hysteria and paranoia in people, along with more misinformation from misleading sources, have strengthened the anti-vaccination cause and has made it into a serious threat to the health of those world-wide.<br/>The aim of this thesis is to provide an accurate and thorough analysis on these three themes- the history of vaccines, their inner workings and machinations in providing immune defenses for the body, and the current controversy of the anti-vaccination movement. Additionally, there will be two other sections going in-depth on two specific areas where vaccination is highly important; The spread and fear of the Human Immunodeficiency Virus (HIV) has been around for nearly four decades, so it begs the question: what makes this such a difficult virus, and how can a vaccine be created to combat it? Additionally, in the last year the world has encountered a new virus that has evolved into a global pandemic, SARS-COV 2. This new strain of coronavirus has shown itself to be highly contagious and rapidly mutating, and the race to quickly develop a vaccine to counteract it has been on-going since its first major infections in Wuhan, China. Overall, this thesis will go in-depth in providing the most accurate, up-to-date, and critical information regarding vaccinations today.

ContributorsKolb Celaya, Connor Emilio (Author) / Topal, Emel (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148347-Thumbnail Image.png
Description

Working with chocolate is a difficult endeavor. However, through the use of additive manufacturing technologies, the labor involved can be reduced. One difficulty is the pumping of the melted chocolate through the system onto the print bed of the printer. In this paper, three systems of transferring chocolate are investigated:

Working with chocolate is a difficult endeavor. However, through the use of additive manufacturing technologies, the labor involved can be reduced. One difficulty is the pumping of the melted chocolate through the system onto the print bed of the printer. In this paper, three systems of transferring chocolate are investigated: A syringe system, a gear pump system, and an auger system. Each system is explained with a model of the proposed system and the pros and cons are discussed. Lastly, a system composed of parts of the syringe and auger system is proposed. The positive and negative aspects of this design are discussed, and a 3D model of the system is given as well. This system is suggested as a better option, and future research can be done to investigate and rate these systems in greater detail. In commercial food applications, these technologies can change the way chocolate is manipulated, and difficult practices can be simplified for home chefs.

ContributorsMester, Daniel (Author) / Chen, Xiangfan (Thesis director) / Gintz, Jerry (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

In the quark model, meson states consisting of a quark/anti-quark pair must obey Poincaré symmetry. As a result of that symmetry, for meson total angular momentum J, parity P, and charge conjugation symmetry C, states with JPC= 0--, 0+-, 1-+, 2+-, 3-+, 4+-, … should not be observed. A meson

In the quark model, meson states consisting of a quark/anti-quark pair must obey Poincaré symmetry. As a result of that symmetry, for meson total angular momentum J, parity P, and charge conjugation symmetry C, states with JPC= 0--, 0+-, 1-+, 2+-, 3-+, 4+-, … should not be observed. A meson observed experimentally with such quantum numbers would indicate a so-called “exotic” meson state. Exotic mesons can be multi-quark states like tetraquarks, a combination of two or more gluons known as glueballs, or a hybrid meson (qqg). Theories have suggested that three possible exotic meson states with the 1-+ quantum number: π1, η1, and η‘1,. However, no conclusive evidence for the existence of these three exotic states has been observed. This research will look for new states that decay to K* K final states with an emphasis on exotic mesons. An analysis of K+ K- π0 final states will be presented, where a restriction on the K - π0 invariant mass yields an unexpected enhancement in the K+ K- π0 spectrum.

ContributorsWalker, Patrick J (Author) / Dugger, Michael (Thesis director) / Sukharev, Maxim (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148258-Thumbnail Image.png
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsRana, Mannat (Co-author) / Levine, Benjamin (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148300-Thumbnail Image.png
Description

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an individual’s engagement with class and campus) and resilience. A single-shot

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an individual’s engagement with class and campus) and resilience. A single-shot survey was administered to 200 participants currently enrolled as undergraduate students at Arizona State University. A multiple regression analysis and Pearson correlations were calculated. A moderate, significant correlation was found between student engagement (total score) and resilience. A significant correlation was found between cognitive engagement (student’s approach and understanding of his learning) and resilience and between valuing and resilience. Contrary to expectations, participation was not associated with resilience. Potential explanations for these results were explored and practical applications for the university were discussed.

ContributorsEmmanuelli, Michelle (Author) / Jimenez Arista, Laura (Thesis director) / Sever, Amy (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148307-Thumbnail Image.png
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsRana, Mannat (Co-author) / Levine, Benjamin (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05