Matching Items (183)
135727-Thumbnail Image.png
Description
As a historical event and a much-loved subject of ancient literature, the Trojan War gave birth to many well-known stories, such as The Iliad, which continue to be enjoyed today. Among these is the lesser known work of Geoffrey Chaucer, titled Troilus and Criseyde. It follows the story of Prince

As a historical event and a much-loved subject of ancient literature, the Trojan War gave birth to many well-known stories, such as The Iliad, which continue to be enjoyed today. Among these is the lesser known work of Geoffrey Chaucer, titled Troilus and Criseyde. It follows the story of Prince Troilus, youngest son of King Priam and a character who is not seen in literature as often as his brothers Hector and Paris. In the 10th year of the Trojan War, Troilus meets the main protagonist, Criseyde, and falls madly in love. Criseyde herself is not in a position to love, but throughout the pages finds herself warming to the prince's favor. Through a beautifully crafted story, Chaucer evokes themes such as loyalty, selfishness, history, physical love versus spiritual love, and the role of women in society. Although it is a lesser known work of Chaucer's, in his day, Troilus and Criseyde was considered his masterpiece. My spring 2016 creative project is a novel retelling of this story entitled In Loving Criseyda. Following the plot of Chaucer's original, In Loving Criseyda is told from the perspective of an additional character: Criseyda's serving maid, Nadia. Nadia serves as the narrator and follows the plot points of the original story, offering her unique perspective on the events. Although Criseyda and Nadia come from opposite ends of society, the two find similarities in their situation and soon become friends. In befriending Criseyda, Nadia's world opens up as she begins to see the world in a new way. The novel becomes a coming of age story for Nadia in the time of the Trojan War, and her journey through love and loss.
ContributorsVecera, Emilie Marie (Author) / Blasingame, James (Thesis director) / Sturges, Robert (Committee member) / Department of English (Contributor) / School of International Letters and Cultures (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136668-Thumbnail Image.png
Description
Dental caries also known as tooth decay is a bacterial infection that causes demineralization and destruction of enamel dentin and cementum in the tooth. This bacterium, Streprococcus mutans, feeds on the carbohydrates in the mouth and produces lactic acids that result in dental caries. This thesis discusses the use of

Dental caries also known as tooth decay is a bacterial infection that causes demineralization and destruction of enamel dentin and cementum in the tooth. This bacterium, Streprococcus mutans, feeds on the carbohydrates in the mouth and produces lactic acids that result in dental caries. This thesis discusses the use of plants to produce antibodies, Guy 13 and anti-GTFB to treat this dental disease. We believe these plant-derived antibodies will be effective to treat dental caries and economical to produce.
ContributorsSayegh, Luvenia Crystal (Author) / Chen, Qiang (Thesis director) / Garg, Vikas (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor)
Created2014-12
136571-Thumbnail Image.png
Description
The purpose of this project was to identify proteins associated with the migration and invasion of non-transformed MCF10A mammary epithelial cells with ectopically expressed missense mutations in p53. Because of the prevalence of TP53 missense mutations in basal-like and triple-negative breast cancer tumors, understanding the effect of TP53 mutations on

The purpose of this project was to identify proteins associated with the migration and invasion of non-transformed MCF10A mammary epithelial cells with ectopically expressed missense mutations in p53. Because of the prevalence of TP53 missense mutations in basal-like and triple-negative breast cancer tumors, understanding the effect of TP53 mutations on the phenotypic expression of human mammary epithelial cells may offer new therapeutic targets for those currently lacking in treatment options. As such, MCF10A mammary epithelial cells ectopically overexpressing structural mutations (G245S, H179R, R175H, Y163C, Y220C, and Y234C) and DNA-binding mutations (R248Q, R248W, R273C, and R273H) in the DNA-binding domain were selected for use in this project. Overexpression of p53 in the mutant cell lines was confirmed by western blot and q-PCR analysis targeting the V5 epitope tag present in the pLenti4 vector used to transduce TP53 into the mutant cell lines. Characterization of the invasion and migration phenotypes resulting from the overexpression of p53 in the mutant cell lines was achieved using transwell invasion and migration assays with Boyden chambers. Statistical analysis showed that three cell lines—DNA-contact mutants R248W and R273C and structural mutant Y220C—were consistently more migratory and invasive and demonstrated a relationship between the migration and invasion properties of the mutant cell lines. Two families of proteins were then explored: those involved in the Epithelial-Mesenchymal Transition (EMT) and matrix metalloproteinases (MMPs). Results of q-PCR and immunofluorescence analysis of epithelial marker E-cadherin and mesenchymal proteins Slug and Vimentin did not show a clear relationship between mRNA and protein expression levels with the migration and invasiveness phenotypes observed in the transwell studies. Results of western blotting, q-PCR, and zymography of MMP-2 and MMP-9 also did not show any consistent results indicating a definite relationship between MMPs and the overall invasiveness of the cells. Finally, two drugs were tested as possible treatments inhibiting invasiveness: ebselen and SBI-183. These drugs were tested on only the most invasive of the MCF10A p53 mutant cell lines (R248W, R273C, and Y220C). Results of invasion assay following 30 μM treatment with ebselen and SBI-183 showed that ebselen does not inhibit invasiveness; SBI-183, however, did inhibit invasiveness in all three cell lines tested. As such, SBI-183 will be an important compound to study in the future as a treatment that could potentially serve to benefit triple-negative or basal-like breast cancer patients who currently lack therapeutic treatment options.
ContributorsZhang, Kathie Q (Author) / LaBaer, Joshua (Thesis director) / Anderson, Karen (Committee member) / Gonzalez, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136581-Thumbnail Image.png
Description
Today's prison industrial complex in the United States often dehumanizes inmates simply because they are criminals. Members of the free society are generally too far removed from the inside of prisons that most people do not see the harsh and cruel conditions for and treatment of prisoners. As a Dance

Today's prison industrial complex in the United States often dehumanizes inmates simply because they are criminals. Members of the free society are generally too far removed from the inside of prisons that most people do not see the harsh and cruel conditions for and treatment of prisoners. As a Dance and Justice Studies major at Arizona State University, I was curious about how to intertwine my interests in dance and justice. This paper chronicles my exploration of adding a human rights issue to my dance practice through choreographing a solo dance performance based on Cleve Foster's unusual experience on death row. Research on theories of prison and punishment in American society combined with physical research in the dance studio enabled me to create a solo performance that shed light on the inhumane conditions for and treatment of prison inmates in today's society. Through the process, I found that some elements of my dance practice stayed the same, while others changed. This informed me of what continuously remains important to me, while allowing me to expand my personal dance practice. I ultimately discovered a bridge between my two passions, dance and justice, and learned a meaningful way to convey a contemporary social justice issue to the general public.
ContributorsKerr, Elena Marie (Author) / Schupp, Karen (Thesis director) / Vissicaro, Pegge (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Social Transformation (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2015-05
141461-Thumbnail Image.png
Description
In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they

In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they typically require additional training (for example, scholars have to learn how to use the command line) or are difficult to automate without programming skills. The Giles Ecosystem is a distributed system based on Apache Kafka that allows users to upload documents for text and image extraction. The system components are implemented using Java and the Spring Framework and are available under an Open Source license on GitHub (https://github.com/diging/).
ContributorsLessios-Damerow, Julia (Contributor) / Peirson, Erick (Contributor) / Laubichler, Manfred (Contributor) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2017-09-28
149404-Thumbnail Image.png
Description
Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used

Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used to produce Ebola immune complex (EIC) in plant leaves and tested it as an Ebola vaccine. The EIC was produced in Nicotiana benthamiana leaves by fusing Ebola virus glycoprotein (GP1) to the C-terminus of heavy chain of 6D8 monoclonal antibody (mAb), which is specific to the 6D8 epitope of GP1, and co-expressing the fusion with the light chain of 6D8 mAb. EIC was purified by ammonium sulfate precipitation and protein A or protein G affinity chromatography. EIC was shown to be immunogenic in mice, but the level of antibody against Ebola virus was not sufficient to protect the mice from lethal the Ebola challenge. Hence, different adjuvants were tested in order to improve the immunogenicity of the EIC. Among several adjuvants that we used, Poly(I:C), which is a synthetic analog of double-stranded ribonucleic acid that can interact with a Toll-like receptor 3, strongly increased the efficacy of our Ebola vaccine. The mice immunized with EIC co-administered with Poly(I:C) produced high levels of neutralizing anti-Ebola IgG, and 80% of the mice were protected from the lethal Ebola virus challenge. Moreover, the EIC induced a predominant T-helper type 1 (Th1) response, whereas Poly(I:C) co-delivered with the EIC stimulated a mixed Th1/Th2 response. This result suggests that the protection against lethal Ebola challenge requires both Th1 and Th2 responses. In conclusion, this study demonstrated that the plant-produced EIC co-delivered with Poly(I:C) induced strong and protective immune responses to the Ebola virus in mice. These results support plant-produced EIC as a good vaccine candidate against the Ebola virus. It should be pursued further in primate studies, and eventually in clinical trials.
ContributorsPhoolcharoen, Waranyoo (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Thesis advisor) / Arntzen, Charles J. (Committee member) / Change, Yung (Committee member) / Ma, Julian (Committee member) / Arizona State University (Publisher)
Created2010
Description
This paper examines creative process and performance as a method of research for understanding self-in-context through the lens of my own artistic research for “Dress in Something Plain and Dark,” a project exploring my relationship as a woman to Mennonite religious and cultural identity, spirituality, and dance. Situating my artistic

This paper examines creative process and performance as a method of research for understanding self-in-context through the lens of my own artistic research for “Dress in Something Plain and Dark,” a project exploring my relationship as a woman to Mennonite religious and cultural identity, spirituality, and dance. Situating my artistic work in relationship to the fields of creative autoethnography, queer and transborder performance art, and somatic dance practice, I discuss the distinctions and commonalities of approach, methods, and practice of artists working in these fields, and the shared challenges of marginalization, translation, and contextualization. In response to these challenges, and the inadequacy of linear, Western, individualistic and mechanistic frameworks to address them, I draw from the ethnographic work of de la Garza, (formerly González, 2000) to seek a “creation-centered” ontological framework that the artist-researcher-performer may use to understand and contextualize their work. I offer the tree as an ontology to understand the organic, emergent nature of creative process, the stages of growth and seasonal cycles, and the structural parts that make up the creative and performative processes, and illustrate this model through a discussion of the growth of “Dress in Something Plain and Dark,” as it has emerged over two cyclical “seasons” of maturation.

Note: This work of creative scholarship is rooted in collaboration between three female artist-scholars: Carly Bates, Raji Ganesan, and Allyson Yoder. Working from a common intersectional, feminist framework, we served as artistic co-directors of each other’s solo pieces and co-producers of Negotiations, in which we share these pieces alongside each other. Negotiations is not a showcase of three individual works, but a conversation among three voices. As collaborators, we have been uncompromising in the pursuit of our own unique inquiries and voices and each of our works of creative scholarship stand alone. However, we believe that all of the parts are best understood in relationship to each other and to the whole. For this reason, we have chosen to cross-reference our thesis documents here, and we encourage readers to view the performance of Negotiations in its entirety.
Thesis documents cross-referenced:
French Vanilla: An Exploration of Biracial Identity Through Narrative Performance, by Carly Bates
Bhairavi: A Performance-Investigation of Belonging and Dis-Belonging in Diaspora Communities, by Raji Ganesan
Deep roots, shared fruits: Emergent creative process and the ecology of solo performance through “Dress in Something Plain and Dark,” by Allyson Yoder
ContributorsYoder, Allyson Joy (Author) / de la Garza, Sarah Amira (Thesis director) / Ellsworth, Angela (Committee member) / DeWitt, Inertia Q. E. D. (Committee member) / School of Film, Dance and Theatre (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Barrett, The Honors College (Contributor) / Hugh Downs School of Human Communication (Contributor)
Created2016-05
130886-Thumbnail Image.png
Description
Coronavirus disease 2019 (COVID-19), an illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been responsible for significant social and economic
disruption, prompting an urgent search for therapeutic solutions. The spike protein of the virus
has been examined as an immunogenic target because of its role in viral binding and fusion
necessary

Coronavirus disease 2019 (COVID-19), an illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been responsible for significant social and economic
disruption, prompting an urgent search for therapeutic solutions. The spike protein of the virus
has been examined as an immunogenic target because of its role in viral binding and fusion
necessary for infection of host cells. Previous studies have identified a recombinant protein
(denoted as S1) that has been shown to potentially induce a neutralizing antibody response by
mimicking the structure of the SARS-CoV-2 spike protein. We have produced the S1 in plants
using agroinfiltration, a plant transformation technique whereby plasmid-containing
Agrobacterium tumefaciens is injected into Nicotiana benthamiana plants, resulting in transfer of
the desired gene from bacteria to plant cells. S1 was expressed to high levels within 5 days of
infiltration, and Western blot analysis showed recognition of the S1 by an anti-S1 antibody.
ELISA results exhibited increased binding activity to anti-S1 with increasing concentrations of
S1, indicating their specific interaction. This ongoing study will demonstrate the potential of a
plant-produced S1 as a vaccine, therapeutic, and diagnostic tool against COVID-19 that is not
only effective, but also cost-efficient and scalable in comparison to conventional mammalian cell
culture production methods.
ContributorsNguyen, Katherine (Author) / Chen, Qiang (Thesis director) / Ghirlanda, Giovanna (Committee member) / Jugler, Collin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130350-Thumbnail Image.png
Description

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683)

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649–705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM).

Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

ContributorsGong, Zhen (Author) / Martin Garcia, Jose Manuel (Author) / Daskalova, Sasha (Author) / Craciunescu, Felicia (Author) / Song, Lusheng (Author) / Dorner, Katerina (Author) / Hansen, Debra (Author) / Yang, Jay-How (Author) / LaBaer, Joshua (Author) / Hogue, Brenda (Author) / Mor, Tsafrir (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Innovations in Medicine (Contributor) / Personalized Diagnostics (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-08-21
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01