Matching Items (94)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
150179-Thumbnail Image.png
Description
Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.
ContributorsTalboom, Joshua S (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2011
152144-Thumbnail Image.png
Description
Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent

Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent and voluntary self-regulation, and physiological reactivity among a longitudinal sample of youth who experienced parental divorce. Participants were drawn from a larger randomized controlled trial of a preventive intervention for children of divorce between the ages of 9 and 12. The current sample included 159 young adults (mean age = 25.5 years; 53% male; 94% Caucasian) who participated in six waves of data collection, including a 15-year follow-up study. Participants reported on exposure to negative life events (four times over a 9-month period) during childhood, and mothers rated child temperament. Six years later, youth reported on the use of active and avoidant coping strategies, and 15 years later, they participated in a standardized psychosocial stress task and provided salivary cortisol samples prior to and following the task. Path analyses within a structural equation framework revealed that a multiple mediation model best fit the data. It was found that children with better mother-rated self-regulation (i.e. low impulsivity, low negative emotionality, and high attentional focus) exhibited lower total cortisol output 15 years later. In addition, greater self-regulation in childhood predicted greater use of active coping in adolescence, whereas a greater number of negative life events predicted increased use of avoidant coping in adolescence. Finally, a greater number of negative events in childhood predicted marginally lower total cortisol output, and higher levels of active coping in adolescence were associated with greater total cortisol output in young adulthood. Findings suggest that children of divorce who exhibit better self-regulation evidence lower cortisol output during a standardized psychosocial stress task relative to those who have higher impulsivity, lower attentional focus, and/or higher negative emotionality. The conceptual significance of the current findings, including the lack of evidence for hypothesized relations, methodological issues that arose, and issues in need of future research are discussed.
ContributorsHagan, Melissa (Author) / Luecken, Linda (Thesis advisor) / MacKinnon, David (Committee member) / Wolchik, Sharlene (Committee member) / Doane, Leah (Committee member) / Arizona State University (Publisher)
Created2013
151501-Thumbnail Image.png
Description
Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not address the effects of weekly cycles in the data. Three Monte Carlo studies investigated the impact of omitting the weekly cycles in daily dairy data under the multilevel model framework. In cases where cycles existed in both the time-varying predictor series (X) and the time-varying outcome series (Y) but were ignored, the effects of the within- and between-person components of X on Y tended to be biased, as were their corresponding standard errors. The direction and magnitude of the bias depended on the phase difference between the cycles in the two series. In cases where cycles existed in only one series but were ignored, the standard errors of the regression coefficients for the within- and between-person components of X tended to be biased, and the direction and magnitude of bias depended on which series contained cyclical components.
ContributorsLiu, Yu (Author) / West, Stephen G. (Thesis advisor) / Enders, Craig K. (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
ContributorsOlivera-Aguilar, Margarita (Author) / Millsap, Roger E. (Thesis advisor) / Levy, Roy (Committee member) / MacKinnon, David (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2013
150618-Thumbnail Image.png
Description
Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.
ContributorsCoxe, Stefany (Author) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2012
150493-Thumbnail Image.png
Description
Research shows that general parenting practices (e.g., support and discipline), influence adolescent substance use. However, socialization theory suggests that parental socialization occurs not only through general parenting practices, but also through parents' attempts to influence specific behaviors and values. A growing literature supports links between substance-specific parenting and adolescent substance

Research shows that general parenting practices (e.g., support and discipline), influence adolescent substance use. However, socialization theory suggests that parental socialization occurs not only through general parenting practices, but also through parents' attempts to influence specific behaviors and values. A growing literature supports links between substance-specific parenting and adolescent substance use. For adolescent alcohol use, there are considerable limitations and gaps within this literature. To address these limitations, the present study examined the factor structure of alcohol-specific parenting, investigated the determinants of alcohol-specific parenting, and explored its association with nondrinking adolescents' attitudes about alcohol use. Using a high-risk sample of nondrinking adolescents and their parents, the current study found three dimensions of alcohol-specific parenting using both adolescent and parent reports, but also found evidence of non-invariance across reporters. Results also revealed complex roles of parental alcohol use disorder (AUD; including recovered and current AUD), family history of AUD, and current drinking as determinants of the three dimensions of anti-alcohol parenting behaviors. Moreover, the current study showed that the effects of these determinants varied by the reporter of the parenting behavior. Finally, the current study found the dimensions of alcohol-specific parenting to be unique and significant predictors of nondrinking adolescents' attitudes about alcohol, over and above general parenting practices, parent AUD, and parent current drinking. Given its demonstrated distinctness from general parenting practices, its link with adolescent alcohol attitudes, and its potential malleability, alcohol-specific parenting may be an important complement to interventions targeting parents of adolescents.
ContributorsHandley, Elizabeth D (Author) / Chassin, Laurie (Thesis advisor) / MacKinnon, David (Committee member) / Crnic, Keith (Committee member) / Sandler, Irwin (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012