Matching Items (194)
132057-Thumbnail Image.png
Description
Introduction: There is currently a lack of industry-wide gold standardization in accelerometer study
protocols, including within sleep-focused studies. This study seeks to address accuracy of
accelerometer data in detection of the beginnings and ends of sleep bouts in young adults with
polysomnography (PSG) corroboration. An existing algorithm used to differentiate

Introduction: There is currently a lack of industry-wide gold standardization in accelerometer study
protocols, including within sleep-focused studies. This study seeks to address accuracy of
accelerometer data in detection of the beginnings and ends of sleep bouts in young adults with
polysomnography (PSG) corroboration. An existing algorithm used to differentiate valid/invalid wear
time and detect bouts of sleep has been modified with the goal of maximizing accuracy of sleep bout
detection. Methods: Three key decisions and thresholds of the algorithm have been modified with three
experimental values each being tested. The main experimental variable Sleepwindow controls the
amount of time before and after a determined bout of sleep that is searched for additional sedentary
time to incorporate and consider part of the same sleep bout. Results were compared to PSG and sleep
diary data for absolute agreement of sleep bout start time (START), end time (END) and time in bed
(TIB). Adjustments were made for outliers as well as sleep latency, snooze time, and the sum of both.
Results: Only adjustments made to a sleep window variable yielded altered results. Between a 5-, 15-,
and 30-minute window, a 15-minute window incurred the least error and most agreement to
comparisons for START, while a 5-minute window was best for END and TIB. Discussion: Contrary
to expectation, corrections for snooze, latency, and both did not substantially improve agreement to
PSG. Algorithm-derived estimates of START and END always fell after sleep diary and PSG both,
suggesting either participants’ sedentary behavior beginning and ends were at a delay from sleep and
wake times, or the algorithm estimates consistently later times than appropriate. The inclusion of a
sleep window variable yields substantial variety in results. A 15-minute window appears best at
determining START while a 5-minute window appears best for END and TIB. Further investigation on
the optimal window length per demographic and condition is required.
ContributorsMartin, Logan Rhett (Author) / Buman, Matthew (Thesis director) / Toledo, Meynard John (Committee member) / Kurka, Jonathan (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
130985-Thumbnail Image.png
Description
This thesis paper examines the effects of increased standing and light physical activity in the workplace on postprandial glucose. Sedentary behavior is detrimental to our health, affecting metabolic risk factors. An easy way to implement change is by decreasing sedentary time in workplaces where sitting is common, such as office

This thesis paper examines the effects of increased standing and light physical activity in the workplace on postprandial glucose. Sedentary behavior is detrimental to our health, affecting metabolic risk factors. An easy way to implement change is by decreasing sedentary time in workplaces where sitting is common, such as office workspaces. To consider how postprandial glucose is affected by decreasing sedentary time, participants ate a standardized meal for lunch and were asked to decrease their sitting time by replacing it with standing and light physical activity.
ContributorsChilders, Autumn Skye (Author) / Buman, Matthew (Thesis director) / Sears, Dorothy (Committee member) / Hasanaj, Kristina (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
132556-Thumbnail Image.png
Description
The purpose of this study was to examine the overall maintenance of behavior during the 12 to 24 month period of the ​Stand&Move@Work​ study and the impact of implementation factors (i.e., facilitators, advocate activity, and the amount of strategies used) on behavior change. The design of the study was a

The purpose of this study was to examine the overall maintenance of behavior during the 12 to 24 month period of the ​Stand&Move@Work​ study and the impact of implementation factors (i.e., facilitators, advocate activity, and the amount of strategies used) on behavior change. The design of the study was a cluster randomized trial which was facilitated by researchers for the first 12 months of the study. The primary aim of the study was to examine the maintenance of behavior change (i.e., sitting time) at the 12 month and 24 month marks using objectively measured sedentary behavior (activPAL micro). The secondary aim of the study was to examine the impact of implementation factors (i.e., facilitators, advocate activity, and the amount of strategies used) on behavior change during the 12 through 24 months maintenance period. Participants (N=630) included full-time, caucasian, middle-aged office workers. For the primary aim, descriptive means were used to cluster for observations within-persons and were adjusted for age, gender, race, job-type, and ordering effects.. For the secondary aim, descriptive means adjusted for workplace culture and environment were computed. At the 24 month mark, participants spent 280.67 ± 87.67 min/8hr workday sitting and 161.94 ± 85.87 min/8hr workday standing. The top performing worksites displayed reductions in sitting time which largely translated into standing time by about 30 minutes per 8 hour workday at 24 months. Feasibility findings indicated that implementation strategies do not show differences between the top 25% and bottom 25% performing worksites. This study provides insight to implementation strategies for interventions in the workplace.
ContributorsTong, Alyssa Taylor (Author) / Buman, Matthew (Thesis director) / Larouche, Miranda (Committee member) / Estabrooks, Paul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
133002-Thumbnail Image.png
Description
Cardiovascular disease attributed to about 800,000 deaths per year and is the leading cause of all-cause mortality in the U.S. Previous studies indicate that reducing sedentary time or increasing physical activity (PA) can independently reduce cardiometabolic risk (CMR). Further, studies have shown that higher levels of moderate-to-vigorous PA can attenuate

Cardiovascular disease attributed to about 800,000 deaths per year and is the leading cause of all-cause mortality in the U.S. Previous studies indicate that reducing sedentary time or increasing physical activity (PA) can independently reduce cardiometabolic risk (CMR). Further, studies have shown that higher levels of moderate-to-vigorous PA can attenuate the negative effects of sedentary behavior on CMR.
In this study, we evaluated the association between sedentary time, light-intensity PA (LPA), and moderate-vigorous PA (MVPA) and CMR biomarkers (high density lipoprotein level, low density lipoprotein level, triglycerides, fasting glucose, total cholesterol, blood pressure, and body mass index). Additionally, we examined if the detrimental association between sedentary time and CMR biomarkers is partially or fully attenuated by MVPA. Baseline objective physical activity and cardiometabolic risk data from a two-arm-cluster randomized trial (Stand&Move@work) were used in this study. Multilevel models clustered by worksite evaluated the fixed effects and interaction between MVPA and sedentary time on CMR. Data from 630 sedentary working adults (from 24 worksites) were included in the analysis. The sample was mainly middle aged (44.6±11.2) females (74%) with race distributions as follows; 70.5% white, 13.8% hispanic, 4.1% black, 5.1% asian, and 2.1% other. Our study showed detrimental trends consistent with previous studies between sedentary behavior and cardiometabolic outcomes including HDL, LDL, and total cholesterol. MVPA demonstrated beneficial associations with lipoproteins including HDL, LDL, total cholesterol, and triglycerides. We observed that high levels of MVPA may be able to partially attenuate the negative effects of highly sedentary behavior on fasting glucose, total cholesterol, and LDL levels. Overall, sedentary behavior indicated deleterious associations with cardiometabolic outcomes. Future directions for this study could examine a more at-risk population or a highly active population for further assessment of CMR biomarkers and the effects of behavior.
ContributorsMeyer, Emily Camille (Author) / Buman, Matthew (Thesis director) / Toledo, Meynard (Committee member) / Pereira, Mark (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132869-Thumbnail Image.png
Description
While type 2 diabetes (T2D) rates have soared, the number of Americans classified as ‘prediabetic’ has also increased. Despite this, current preventative approaches are costly and often not without undue side-effects. Instead, behavioral lifestyle approaches hold promise in reducing conversion rates of T2D as the latest treatment option that could

While type 2 diabetes (T2D) rates have soared, the number of Americans classified as ‘prediabetic’ has also increased. Despite this, current preventative approaches are costly and often not without undue side-effects. Instead, behavioral lifestyle approaches hold promise in reducing conversion rates of T2D as the latest treatment option that could mitigate and transform disease management. However, present interventions do not possess the scope necessary for implementation in a realistic, scalable way that can target the large at-risk population.
The application (app) “BeWell24” mitigates this diabetes risk through targeting sleep, physical activity, sedentary behavior, and diet, and is being delivered through mHealth technology to attenuate the higher-risk of the prediabetic Veteran population. In order for full scale dissemination, this thesis examines a provider perspective of the ‘Post-intervention interview guide’, performed with a Phoenix Veterans Affairs Health Care System (PVAHCS) provider. It then suggests revisions to the interview guide based on the provider’s interview and existing literature. This thesis also emphasizes the rationale behind these proposed changes to be organized in line with the iPARIHS framework (integrated Promoting Action on Research Implementation in Health Services).
Overall, the provider responded positively to BeWell24 and the ‘Post-intervention interview guide’, with constructive suggestions for each question in the interview guide. The main theme of the provider’s answers and comments were to prioritize efficiency and preserve standard clinical flow. A revised interview guide is provided, which prospectively presents as a more brief and focused interview organized by the iPARIHS framework. This revised interview guide could aid in the clarity of provider responses, specifically for the prospective interviews of the ongoing larger BeWell24 study and future studies.
ContributorsWojtas, Abby Ann (Author) / Buman, Matthew (Thesis director) / Larouche, Miranda (Committee member) / Epstein, Dana (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133691-Thumbnail Image.png
Description
Mobile health or "mHealth" defines a broad spectrum of medical or public health practice supported by mobile devices. The patient's perception of mobile health applications is the key point in confronting whether or not patients will utilize the tools at their disposal As such, the primary aim of this study

Mobile health or "mHealth" defines a broad spectrum of medical or public health practice supported by mobile devices. The patient's perception of mobile health applications is the key point in confronting whether or not patients will utilize the tools at their disposal As such, the primary aim of this study was to examine participant feedback through quantitative and qualitative measures using the Therapy Evaluation Questionnaire and a patient interview, respectively, to further understand the patient rated acceptability of using BeWell24 and SleepWell24 for improving health outcomes. For BeWell24, it was hypothesized that patients who received the Multicomponent version would report higher acceptability scores than those randomized to the Health Education version. Furthermore, in regard to SleepWell24, it was hypothesized that the SleepWell24 patient would provide positive feedback and suggestions regarding their own experience with the SleepWell24 app. Data from this thesis was pulled from two ongoing randomized controlled trials currently being conducted at the Phoenix Veteran Affairs Health Care Service (PVACHS) and Mayo Clinic hospitals. Means, standard deviations, frequencies, and percentages were commuted to summarize demographics and TEQ scores. In addition, key concepts from a qualitative interview with a SleepWell24 participant were derived. The results showed a greater acceptability of the multicomponent versions of BeWell24 and SleepWell24 but a lower TEQ score of perceived usability. mHealth implementations pose a potential to become an important part of the health sector for establishing innovative approaches to delivering care, and while benefits have been highly praised, it is clear that the perceptions of mHealth must be positive if the technology is to transcend into a practical clinical setting.
ContributorsJimenez, Asael (Author) / Buman, Matthew (Thesis director) / Epstein, Dana (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
ContributorsLoo, Vincent You Wei (Author) / LaBaer, Joshua (Thesis director) / Mehta, Shwetal (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05