Matching Items (149)
171968-Thumbnail Image.png
Description
DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long

DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long processing time and are expensive. Here, a novel technique called Multiplexed Methylated DNA Immunoprecipitation Sequencing (Mx-MeDIP-Seq), which is amenable to automation. Up to 15 different samples can be combined into the same run of Mx-MeDIP-Seq, using only 25 ng of DNA per sample. Mx-MeDIP-Seq was used to study DNAm profiles of peripheral blood mononuclear cells (PBMCs) in two biologically distinct RNA viral infections with different modes of transmission, symptoms, and interaction with the host immune system: human immunodeficiency virus1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Analysis of 90 hospitalized patients with SARS-CoV-2 and 57 healthy controls revealed that SARS-CoV-2 infection led to alterations in 920 methylated regions in PBMCs, resulting in a change in transcription that affects host immune response and cell survival. Analysis of publicly available RNA-Sequencing data in COVID-19 correlated with DNAm in several key pathways. These findings provide a mechanistic view toward further understanding of viral infections. Genome-wide DNAm changes post HIV-1-infection from 37 chronically ill patients compared to 17 controls revealed dysregulation of the actin cytoskeleton, which could contribute to the establishment of latency in HIV-1 infections. Longitudinal DNAm analysis identified several potentially protective and harmful genes that could contribute to disease suppression or progression.
ContributorsRidha, Inam (Author) / LaBaer, Joshua (Thesis advisor) / Murugan, Vel (Thesis advisor) / Plaisier, Christopher (Committee member) / Nikkhah, Mehdi (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2022
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
168356-Thumbnail Image.png
Description
Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly

Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly attacks the commensal bacteria and leads to inflammation. We studied antibody response of 100 Crohn’s disease (CD), 100 ulcerative colitis (UC) and 100 healthy controls against 1,173 bacterial and 397 viral proteins. We found some anti-bacterial antibodies higher in CD compared to controls while some antibodies lower in UC compared to controls. We were able to build biomarker panels with AUCs of 0.81, 0.87, and 0.82 distinguishing CD vs. control, UC vs. control, and CD vs. UC, respectively. Subgroup analysis based on the Montreal classification revealed that penetrating CD behavior (B3), colonic CD location (L2), and extensive UC (E3) exhibited highest antibody reactivity among all patients. We also wanted to study the reason for the presence of autoantibodies in the sera of healthy individuals. A meta-analysis of 9 independent biomarker study was performed to find 77 common autoantibodies shared by healthy individuals. There was no gender bias; however, the number of autoantibodies increased with age, plateauing around adolescence. Molecular mimicry likely contributed to the elicitation of a subset of these common autoantibodies as 21 common autoantigens had 7 or more ungapped amino acid matches with viral proteins. Intrinsic properties of protein like hydrophilicity, basicity, aromaticity, and flexibility were enriched for common autoantigens. Subcellular localization and tissue expression analysis indicated the sequestration of some autoantigens from circulating autoantibodies can explain the absence of autoimmunity in these healthy individuals.
ContributorsShome, Mahasish (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
168433-Thumbnail Image.png
Description
Exposure of liquid biospecimens like plasma and serum (P/S) to improper handling and storage can impact the integrity of biomolecules, potentially leading to apparent quantitative changes of important clinical proteins. An accurate and quick estimate of the quality of biospecimens employed in biomarker discovery and validation studies is essential to

Exposure of liquid biospecimens like plasma and serum (P/S) to improper handling and storage can impact the integrity of biomolecules, potentially leading to apparent quantitative changes of important clinical proteins. An accurate and quick estimate of the quality of biospecimens employed in biomarker discovery and validation studies is essential to facilitating accurate conclusions. ΔS-Cys-Albumin is a marker of blood P/S exposure to thawed conditions that can quantitatively track the exposure of P/S to temperatures greater than their freezing point of -30 C. Reported here are studies carried out to evaluate the potential of ΔS-Cys-Albumin to track the stability of clinically important analytes present in P/S upon their exposure to thawed conditions. P/S samples obtained from both cancer-free donors and cancer patients were exposed to 23 C (room temperature), 4 C and -20 C degrees, and the degree to which the apparent concentrations of clinically relevant biomolecules present in P/S were impacted during the time it took ΔS-Cys-Albumin to reach zero was measured. Analyte concentrations measured by molecular interaction-based assays were significantly impacted when samples were exposed to the point where average ΔS-Cys-Albumin fell below 12% at each temperature. Furthermore, the percentage of proteins that became unstable with time under thawed conditions exhibited a strong inverse linear relationship to ΔS-Cys-Albumin, indicating that ΔS-Cys-Albumin can serve as an effective surrogate marker to track the stability of other clinically relevant proteins in plasma as well as to estimate the fraction of proteins that have been destabilized by exposure to thawed conditions, regardless of what the exposure temperature(s) may have been. These results indicated that P/S exposure to thawed conditions disrupts epitopes required for clinical protein quantification via molecular interaction-based assays. In continuation of this theme, a spurious binding event between two clinically important proteins, Apolipoprotein E (ApoE) and Interferon-  (IFN) present in human plasma under in vitro experimental conditions is also reported. The interaction was confirmed to be evident only when ApoE was expressed in vitro with a Glutathione-S-Transferase (GST) fusion tag. Future steps required to find the exact manner in which the GST fusion tag facilitated the association between ApoE and IFNγ are discussed with emphasis on the possible pitfalls associated with using fusion proteins for studying novel protein-protein interactions.
ContributorsKapuruge, Erandi Prasadini (Author) / Borges, Chad R (Thesis advisor) / LaBaer, Joshua (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2021
162007-Thumbnail Image.png
Description
Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to

Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to γ-carboxyglutamic acid (Gla) residues. This modification confers increased binding of Oc to Ca2+ and hydroxyapatite matrix. Presented here, novel metal binding partners Mn2+, Fe3+, and Cr3+ of human Oc were determined, while the previously identified binders to (generally) non-human Oc, Ca2+, Mg2+, Pb2+ and Al3+ were validated as binders to human Oc by direct infusion mass spectrometry with all metals binding with higher affinity to the post-translationally modified form (Gla-Oc) compared to the unmodified form (Glu-Oc). Oc was also found to form pentamer (Gla-Oc) and pentamer and tetramer (Glu-Oc) homomeric self-assemblies in the absence of NaCl, which disassembled to monomers in the presence of near physiological Na+ concentrations. Additionally, Oc was found to form filamentous structures in vitro by negative stain TEM in the presence of increased Ca2+ titrations in a Gla- and pH-dependent manner. Finally, by combining circular dichroism spectroscopy to determine the fraction of Gla-Oc bound, and inductively-coupled plasma mass spectrometry to quantify total Al concentrations, the data were fit to a single-site binding model and the equilibrium dissociation constant for Al3+ binding to human Gla-Oc was determined (Kd = 1.0 ± 0.12 nM). Including citrate, a known competitive binder of Al3+, maintained Al in solution and enabled calculation of free Al3+ concentrations using a Matlab script to solve the complex set of linear equations. To further improve Al solubility limits, the pH of the system was lowered to 4.5, the pH during bone resorption. Complementary binding experiments with Glu-Oc were not possible due to the observed precipitation of Glu-Oc at pH 4.5, although qualitatively if Glu-Oc binds Al3+, it is with much lower affinity compared to Gla-Oc. Taken together, the results presented here further support the importance of post-translational modification, and thus adequate nutritional intake of vitamin K, on the binding and self-assembly properties of human Oc.
ContributorsThibert, Stephanie (Author) / Borges, Chad R (Thesis advisor) / LaBaer, Joshua (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2021
166167-Thumbnail Image.png
Description

The 5-year survival rate for late-stage metastatic melanoma is only ~30%. A major reason for this low survival rate is that one of the most commonly mutated genes in melanoma, NRAS, has no FDA-approved targeted therapies. Because the RAS protein does not have any targeted therapies, patients with RAS mutant

The 5-year survival rate for late-stage metastatic melanoma is only ~30%. A major reason for this low survival rate is that one of the most commonly mutated genes in melanoma, NRAS, has no FDA-approved targeted therapies. Because the RAS protein does not have any targeted therapies, patients with RAS mutant tumors have an ongoing need for treatments that indirectly target RAS. This thesis project aims to identify expression and phosphorylation levels of proteins downstream of RAS in melanoma cell lines with the most common driver mutations. By analyzing the protein-level differences between these genetic mutants, we hope to identify additional indirect RAS protein targets for the treatment of NRAS mutant melanoma. RAS has several downstream effector proteins involved in oncogenic signaling pathways including FAK, Paxillin, AKT, and ERK. 5 melanoma cell lines (2 BRAF mutant, 2 NRAS mutant, and 1 designated wildtype) were analyzed using western bloting for FAK, Paxillin, AKT, and ERK phosphorylation and total expression levels. The results of western blot analysis showed that NRAS mutant cell lines had increased expression of phosphorylated Paxillin. Increased Paxillin phosphorylation corresponds to increased Paxillin binding at the FAT domain of FAK. Therefore, cell lines with increased FAK FAT – Paxillin interaction would be more sensitive to FAK FAT domain inhibition. The data presented provide an an explanation for the reduction in cell viability in NRAS mutant cell lines infected with Ad-FRNK. This information also has significant clinical relevance as researchers work to develop synthetic FAK FAT domain inhibitors, such as cyclic peptides. Additionally, cell lines with high levels of phosphorylated AKT showed a significant reduction in the amount of phosphorylated ERK. The identification of this inverse relationship may help to explain why BRAF and NRAS mutations are mutually exclusive. To conclude, NRAS mutant cell lines have increased expression of phosphorylated Paxillin and AKT which may explain why NRAS mutant cell lines are more sensitive to FAK FAT domain inhibition.

ContributorsSherwood, Nicole (Author) / Gould, Ian (Thesis director) / LaBaer, Joshua (Committee member) / Marlowe, Timothy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
166198-Thumbnail Image.png
Description
People with disabilities are underrepresented in the Science, Technology, Engineering, and Math (STEM) workforce (NSF, 2016). One way to increase representation of people with disabilities in STEM fields is by supporting students with disabilities (SWDs) at the undergraduate level. In undergraduate education in the United States, SWDs represent approximately 19%

People with disabilities are underrepresented in the Science, Technology, Engineering, and Math (STEM) workforce (NSF, 2016). One way to increase representation of people with disabilities in STEM fields is by supporting students with disabilities (SWDs) at the undergraduate level. In undergraduate education in the United States, SWDs represent approximately 19% of the undergraduate community (U.S. Census Bureau, 2021). However, SWDs have lower graduation and retention rates. This is particularly true for STEM majors, where SWDs make up about 9% of the STEM community in higher education. The AAC&U has defined a list of High-Impact Practices (HIPs), which are active learning practices and experiences that encourage deep learning by promoting student engagement, and could ultimately support student retention (AAC&U). To date, student-centered disability research has not explored the extent to which SWDs participate in HIPs. We hypothesized that SWDs are less likely than students without disabilities to be involved in HIPs and that students who identify as having severe disabilities would participate in HIPs at lower rates. In this study, we conducted a national survey to examine involvement in HIPs for students with disabilities in STEM. We found that disability status significantly affects the probability of participation in undergraduate research, but is not a significant factor for participation in most other HIPs. We also found that self-reported severity of disability did not significantly impact participation in HIPs, though we observed trends that students reporting higher severity generally reported lower participation in HIPs. Our open-ended responses did indicate that SWDs still faced barriers to participation in HIPs.
ContributorsPais, Danielle (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
165130-Thumbnail Image.png
Description

There is increasing interest in understanding how active learning affects students’ mental health as science courses transition from traditional lecture to active learning. Prior research has found that active learning can both alleviate and exacerbate undergraduate mental health problems. Existing studies have only examined the relationship between active learning and

There is increasing interest in understanding how active learning affects students’ mental health as science courses transition from traditional lecture to active learning. Prior research has found that active learning can both alleviate and exacerbate undergraduate mental health problems. Existing studies have only examined the relationship between active learning and anxiety. No studies have examined the relationship between active learning and undergraduate depression. To address this gap in the literature, we conducted hour-long exploratory interviews with 29 students with depression who had taken active learning science courses across six U.S. institutions. We probed what aspects of active learning practices exacerbate or alleviate depressive symptoms and how students’ depression affects their experiences in active learning. We found that aspects of active learning practices exacerbate and alleviate students’ depressive symptoms, and depression negatively impacts students’ experiences in active learning. The underlying aspects of active learning practices that impact students’ depression fall into four overarching categories: inherently social, inherently engaging, opportunities to compare selves to others, and opportunities to validate or invalidate intelligence. We hope that by better understanding the experiences of undergraduates with depression in active learning courses we can create more inclusive learning environments for these students.

ContributorsAraghi, Tala (Author) / Cooper, Katelyn (Thesis director) / Brownell, Sara (Committee member) / Busch, Carly (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165842-Thumbnail Image.png
Description
Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM

Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM from the structure of education to admission or promotions to higher-level positions. One of these barriers is unconscious biases that impact the quality of letters of recommendation for women and URM and their success in application processes to higher education. Though letters of recommendation provide a qualitative aspect to an application and can reveal the typical performance of the applicant, research has found that the unstructured nature of the traditional recommendation letter allows for gender and racial bias to impact the quality of letters of recommendation. Standardized letters of recommendation have been implemented in various fields and have been found to reduce the presence of bias in recommendation letters. This paper reviews the trends seen across the literature regarding equity in the use of letters of recommendation for undergraduates.
ContributorsKolath, Nina (Author) / Brownell, Sara (Thesis director) / Goodwin, Emma (Committee member) / Barrett, The Honors College (Contributor) / School of Criminology and Criminal Justice (Contributor) / School of Life Sciences (Contributor)
Created2022-05
191030-Thumbnail Image.png
Description
Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid

Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid diagnostics currently have the potential to be developed and manufactured within weeks of an outbreak owing to the speed of next-generation sequencing and custom DNA synthesis. Among nucleic acid diagnostics, isothermal amplification strategies are uniquely suited for PoC implementation due to their simple instrumentation and lack of thermocycling requirement. Unfortunately, isothermal strategies are currently prone to spurious nonspecific amplification, hindering their specificity and necessitating extensive empirical design pipelines that are both time and resource intensive. In this work, isothermal amplification strategies are extensively compared for their feasibility of implementation in outbreak response scenarios. One such technology, Loop-mediated Amplification (LAMP), is identified as having high-potential for rapid development and PoC deployment. Various approaches to abrogating nonspecific amplification are described including a novel in silico design tool based on coarse-grained simulation of interactions between thermophilic DNA polymerase and DNA strands in isothermal reaction conditions. Nonspecific amplification is shown to be due to stabilization of primer secondary structures by high concentrations of Bst DNA polymerase and a mechanism of micro-complement-mediated cross-priming is demonstrated as causal via nanopore sequencing of nonspecific reaction products. The resulting computational model predicts primer set background in 64% of 67 test assays and its usefulness is illustrated further by determining problematic primers in a West Nile Virus-specific LAMP primer set and optimizing primer 3’ nucleotides to eliminate micro-complements within the reaction, resulting in inhibition of background accumulation. Finally, the emergence of Orthopox monkeypox (MPXV) as a recurring threat is discussed and SimCycle is utilized to develop a novel technique for clade-specific discrimination of MPXV based on bridging viral genomic rearrangements (Bridging LAMP). Bridging LAMP is implemented in a 4-plex microfluidic format and demonstrates 100% sensitivity in detection of 100 copies of viral lysates and 45 crude MPXV-positive patient samples collected during the 2022 Clade IIb outbreak.
ContributorsKnappenberger, Mark Daniel (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Roberson, Robert (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2023