Matching Items (187)
Description
In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor

In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor (CPSF) complex is responsible for recognizing a short hexameric element AAUAAA located at the 3’end in the nascent mRNA molecule and catalyzing the pre-mRNA cleavage. In the round nematode C. elegans, the cleavage reaction is executed by a subunit of this complex named CPSF3, a highly conserved RNA endonuclease. While the crystal structure of its human ortholog CPSF73 has been recently identified, we still do not understand the molecular mechanisms and sequence specificity used by this protein to induce cleavage, which in turn would help to understand how this process is executed in detail. Additionally, we do not understand in additional factors are needed for this process. In order to address these issues, we performed a comparative analysis of the CPSF3 protein in higher eukaryotes to identify conserved functional domains. The overall percent identities for members of the CPSF complex range from 33.68% to 56.49%, suggesting that the human and C. elegans orthologs retain a high level of conservation. CPSF73 is the protein with the overall highest percent identity of the CPSF complex, with its active site-containing domain possessing 74.60% identity with CPSF3. Additionally, we gathered and expressed using a bacterial expression system CPSF3 and a mutant, which is unable to perform the cleavage reaction, and developed an in vitro cleavage assay to test whether CPSF3 activity is necessary and sufficient to induce nascent mRNA cleavage. This project establishes tools to better understand how CPSF3 functions within the CPC and sheds light on the biology surrounding the transcription process as a whole.
ContributorsGallante, Christina (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Hrach, Heather (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131567-Thumbnail Image.png
Description
The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production,

The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production, indicating possible further improvements in catalytic activity.
ContributorsGwerder, Noah D (Author) / Ghirlanda, Giovanna (Thesis director) / Williams, Peter (Committee member) / Mangone, Marco (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131672-Thumbnail Image.png
Description
The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA cells and MRSA secreted proteins [culture filtrate proteins (CFPs)] as a complementary method of controlling MRSA infections. GPs have been synthesized with variable pore sizes (meso/macro scale) and further modified with stearic acid (SA) to increase surface hydrophobicity. Four GPs (SA-macroGP, macroGP, SA-mesoGP, and mesoGP) were incubated with whole cells and with CFPs to quantify GP adsorption capabilities. Following MRSA culture incubation with GPs, unbound MRSA cells were filtered and plated to determine cell counts. Following CFP incubation with GPs, unbound CFPs were separated via SDS-PAGE, stained with SYPRO Ruby, and analyzed using densitometry. Results indicate that macroGP was the most effective at adsorbing whole MRSA cells. Visual banding patterns and densitometry quantitation indicate that SA-mesoGP was the most effective at adsorbing CFP. Ultimately, GP-based products may be further developed as nonselective or selective adsorbents and integrated into fibrous materials for topical applications.
ContributorsGanser, Collin (Co-author, Co-author) / Haydel, Shelley E. (Thesis director) / Seo, Don (Committee member) / Borges, Chad (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132725-Thumbnail Image.png
Description
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The N terminus binds to actin and the C terminus binds to dystrophin glycoprotein complex (DGC). DMD is caused by mutations in the dystrophin gene. C. elegans possess an ortholog of dystrophin, DYS-1. Though there is evidence that C. elegans can be used as a model organism to model DMD, nematode DGC has not been well characterized. Additionally, while we know that mitochondrial dysfunction has been found in humans and other model organisms, this has not been well defined in C. elegans. In order to address these issues, we crossed the SJ4103 worm strain (myo-3p::GFP(mit)) with dys-1(cx18) in order to visualize and quantify changes in mitochondria in a dys-1 background. SJ4103;cx18 nematodes were found to have less mitochondrial than SJ4103 which suggests mitochondrial dysfunction does occur in dys-1 worms. Furthermore, mitochondrial dysfunction was studied by knocking down members of the DGC, dys-1, dyb-1, sgn-1, sgca-1, and sgcb-1 in SJ4103 strain. Knock down of each gene resulted in decrease in abundance of mitochondria which suggests that each member of the DGC contributes to the overall health of nematode muscle. The ORF of dyb-1 was successfully cloned and tagged with GFP in order to visualize this DGC member C. elegans. Imaging of the transgenic dyb-1::GFP worm shows green fluoresce expressed in which suggests that dyb-1 is a functional component of the muscle fibers. This project will enable us to better understand the effects of dystrophin deficiency on mitochondrial function as well as visualize the expression of certain members of the DGC in order to establish C. elegans as a good model organism to study this disease.
ContributorsObrien, Shannon Nishino (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Hrach, Heather (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133164-Thumbnail Image.png
Description
In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality

In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality of biospecimens in an undesired way and ultimately render the samples unsuitable for molecular analysis. The limited ability to directly reduce discrepancies caused by preanalytical variables gives rise to the need for development and retrospective application of appropriate tests for assessment of biospecimen integrity. Nevertheless, the most standard approaches to assessing biospecimen integrity involve nontrivial procedures. Thus, the need for quality control tools or tests that are readily applicable and can produce results in a straightforward way becomes critical. As one of the major ex vivo biomolecular degradation mechanisms, oxidation that occurs when blood plasma and serum samples are exposed to thawed states during storage and processing is hard to forestall and detect. In an attempt to easily detect and monitor the degree of oxidation, the technique of Fluorescence Resonance Energy Transfer (FRET) was examined to determine whether this concept could be employed to monitor exposure of samples to thawed conditions when controlled by spontaneous oxidative disulfide bonding. The intended mode of usage was envisioned as a fluorescence liquid being stored in a separate compartment but within the same test tube as archived plasma and serum samples. This would allow the assessment of sample integrity by direct visualization of fluorescence under a hand-held black light. The fluorescent dynamic range as well as kinetic control of the reaction were studied. While the addition of Cu(II) proved to facilitate excellent dynamic range with regard to fluorescence quenching, the kinetics of the reaction were too rapid for practical use. Further investigation revealed that the fluorescence quenching mechanism might have actually occurred via Intramolecular Charge Transfer (ICT) rather than FRET mediated by oxidative disulfide bond formation. Introduction of Cu(II) via copper metal slowed fluorescence quenching to the point of practical utility; facilitating demonstration that storing at room temperature, refrigerating or freezing the samples delayed fluorescence quenching to different extents. To establish better kinetic control, future works will focus on establishing controlled, thoroughly understood kinetic release of Cu(II) from copper metal.
ContributorsZhang, Zihan (Author) / Borges, Chad (Thesis director) / Emady, Heather (Committee member) / Williams, Peter (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134136-Thumbnail Image.png
Description
Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes.

Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes. There are a variety of methods, or assays, to detect biomarkers, but the most common assay is enzyme-linked immunosorbent assay (ELISA). A new-generation assay termed mass spectrometric immunoassay (MSIA) can measure proteoforms, the different chemical variations of proteins, and their relative abundance. ELISA on the other hand measures the overall concentration of protein in the sample. Measuring each of the proteoforms of a protein is important because only one or two variations could be biologically significant and/or cause diseases. However, running MSIA is expensive. For this reason, an alternative plate-based MSIA technique was tested for its ability to detect the proteoforms of a protein called apolipoprotein C-III (ApoC-III). This technique combines the protein capturing procedure of ELISA to isolate the protein with detection in a mass spectrometer. A larger amount of ApoC-III present in the body indicates a considerable risk for coronary heart disease. The precision of the assay is determined on the coefficient of variation (CV). A CV value is the ratio of standard deviation in relation to the mean, represented as a percentage. The smaller the percentage, the less variation the assay has, and therefore the more ability it has to detect subtle changes in the biomarker. An accepted CV would be less than 10% for single-day tests (intra-day) and less than 15% for multi-day tests (inter-day). The plate-based MSIA was started by first coating a 96-well round bottom plate with 2.5 micrograms of ApoC-III antibody. Next, a series of steps were conducted: a buffer wash, then the sample incubation, followed by another buffer wash and two consecutive water washes. After the final wash, the wells were filled with a MALDI matrix, then spotted onto a gold plate to dry. The dry gold target was then placed into a MALDI-TOF mass spectrometer to produce mass spectra for each spot. The mass spectra were calibrated and the area underneath each of the four peaks representing the ApoC-III proteoforms was exported as an Excel file. The intra-day CV values were found by dividing the standard deviation by the average relative abundance of each peak. After repeating the same procedure for three more days, the inter-day CVs were found using the same method. After completing the experiment, the CV values were all within the acceptable guidelines. Therefore, the plate-based MSIA is a viable alternative for finding proteoforms than the more expensive MSIA tips. To further validate this, additional tests will need to be conducted with different proteins and number of samples to determine assay flexibility.
ContributorsTieu, Luc (Author) / Borges, Chad (Thesis director) / Nedelkov, Dobrin (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134295-Thumbnail Image.png
Description
Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high

Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high fat diet (HFD). A dose of 0.25 mg/kg NE was used to elicit a temperature response that was measured using transponders inserted subcutaneously over the BAT and lower back and intraperitoneally to measure the core temperature. The results found that the thermic effect of the BAT increased after the transition from low fat diet to a high fat diet (LFD) yet, after prolonged exposure to the HFD, the effects resembled levels found with the LFD. This suggests that while a HFD may stimulate the effect of BAT, long term exposure may have adverse effects on BAT activity. This may be due to internal factors that will need to be examined further.
ContributorsSion, Paul William (Author) / Herman, Richard (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05