Matching Items (48)
Description

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our understanding of such complex systems. However, the data at our disposal are often not easily comparable, have limited scope and scale, and are based on disparate underlying frameworks inhibiting synthesis, meta-analysis, and the validation of findings. Research efforts are further hampered when case inclusion criteria, variable definitions, coding schema, and inter-coder reliability testing are not made explicit in the presentation of research and shared among the research community. This paper first outlines challenges experienced by researchers engaged in a large-scale coding project; then highlights valuable lessons learned; and finally discusses opportunities for further research on comparative case study analysis focusing on social-ecological systems and common pool resources. Includes supplemental materials and appendices published in the International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016.

ContributorsRatajczyk, Elicia (Author) / Brady, Ute (Author) / Baggio, Jacopo (Author) / Barnett, Allain J. (Author) / Perez Ibarra, Irene (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
Description

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards understanding multiple-causation of CPR outcomes by analyzing 1) the co-occurrence of Design Principles (DP) by activity (irrigation, fishery and forestry), and 2) the combination(s) of DPs leading to social and ecological success. We analyzed 69 cases pertaining to three different activities: irrigation, fishery, and forestry. We find that the importance of the design principles is dependent upon the natural and hard human made infrastructure (i.e. canals, equipment, vessels etc.). For example, clearly defined social boundaries are important when the natural infrastructure is highly mobile (i.e. tuna fish), while monitoring is more important when the natural infrastructure is more static (i.e. forests or water contained within an irrigation system). However, we also find that congruence between local conditions and rules and proportionality between investment and extraction are key for CPR success independent from the natural and human hard made infrastructure. We further provide new visualization techniques for co-occurrence patterns and add to qualitative comparative analysis by introducing a reliability metric to deal with a large meta-analysis dataset on secondary data where information is missing or uncertain.

Includes supplemental materials and appendices publications in International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016

ContributorsBaggio, Jacopo (Author) / Barnett, Alain J. (Author) / Perez, Irene (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-09-09
129125-Thumbnail Image.png
Description

In 2013, the community of mathematical scientists and educators focused its collective attention on the mathematics of planet Earth. In the course of the year, a grassroots organization grew into an international partnership of more than 150 scientific societies, universities, research institutes, and organizations. The project, known as “Mathematics of

In 2013, the community of mathematical scientists and educators focused its collective attention on the mathematics of planet Earth. In the course of the year, a grassroots organization grew into an international partnership of more than 150 scientific societies, universities, research institutes, and organizations. The project, known as “Mathematics of Planet Earth 2013” (MPE2013), received the patronage of UNESCO and was a truly unique event. It brought the challenges facing our planet to the attention of the mathematics research community in numerous lectures, seminars, workshops, and special sessions at conferences of the professional societies; it sponsored the development of curriculum materials for all educational levels; it organized many outreach activities, including an international juried exhibit of virtual and physical displays for use in museums and schools; and it presented a series of public lectures by renowned scientists showing the public how mathematics contributes to our understanding of planet Earth, the nature of the challenges our planet is facing, and how mathematicians contribute to their solution. At the end of the year, MPE2013 morphed into “Mathematics of Planet Earth” (MPE).

ContributorsAnderies, John (Author) / Kaper, Hans G. (Author) / Shuckburgh, Emily F. (Author) / Zagaris, Antonios (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-01
129171-Thumbnail Image.png
Description

This article advances recent scholarship on energy security by arguing that the concept is best understood as a sociotechnical imaginary, a collective vision for a “good society” realized through technoscientific-oriented policies. Focusing on the 1952 Resources for Freedom report, the authors trace the genealogy of energy security, elucidating how it

This article advances recent scholarship on energy security by arguing that the concept is best understood as a sociotechnical imaginary, a collective vision for a “good society” realized through technoscientific-oriented policies. Focusing on the 1952 Resources for Freedom report, the authors trace the genealogy of energy security, elucidating how it establishes a morality of efficiency that orients policy action under the guise of security toward the liberalizing of markets in resource states and a robust program of energy research and development in the United States. This evidence challenges the pervasive historical anchoring of the concept in the 1970s and illustrates the importance of the genealogical approach for the emerging literature on energy and sociotechnical imaginaries. Exploring the genealogy of energy security also unpacks key social, political, and economic undercurrents that disrupt the seeming universality of the language of energy, leading the authors to question whether energy security discourse is appropriate for guiding policy action during ongoing global energy transitions.

Created2015-09-01
128312-Thumbnail Image.png
Description

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve (ECBR), spreading across Poland, Slovakia, and Ukraine, represents a large social-ecological system (SES) that has been protected under the biosphere reserve designation since 1998. We have explored its successes and failures in improving human livelihoods while safeguarding its ecosystems. The SES framework, which includes governance system, actors, resources, and external influences, was used as a frame of analysis. The outcomes of this protected area have been mixed; its creation led to national and international collaboration, yet some actor groups remain excluded. Implementation of protocols arising from the Carpathian Convention has been slow, while deforestation, hunting, erosion, temperature extremes, and changes in species behavior remain significant threats but have also been factors in ecological adaptation. The loss of cultural links and traditional knowledge has also been significant. Nevertheless, this remains a highly biodiverse area. Political barriers and institutional blockages will have to be removed to ensure this reserve fulfills its role as a model region for international collaboration and capacity building. These insights drawn from the ECBR demonstrate that biosphere reserves are indeed learning sites for sustainable development and that this case is exemplary in illustrating the challenges, but more importantly, the opportunities that arise when ensuring parallel care and respect for people and ecosystems through the model of transboundary protected areas around the world.

Created2016
128313-Thumbnail Image.png
Description

Climate change and its interactions with complex socioeconomic dynamics dictate the need for decision makers to move from incremental adaptation toward transformation as societies try to cope with unprecedented and uncertain change. Developing pathways toward transformation is especially difficult in regions with multiple contested resource uses and rights, with diverse

Climate change and its interactions with complex socioeconomic dynamics dictate the need for decision makers to move from incremental adaptation toward transformation as societies try to cope with unprecedented and uncertain change. Developing pathways toward transformation is especially difficult in regions with multiple contested resource uses and rights, with diverse decision makers and rules, and where high uncertainty is generated by differences in stakeholders’ values, understanding of climate change, and ways of adapting. Such a region is the Murray-Darling Basin, Australia, from which we provide insights for developing a process to address these constraints. We present criteria for sequencing actions along adaptation pathways: feasibility of the action within the current decision context, its facilitation of other actions, its role in averting exceedance of a critical threshold, its robustness and resilience under diverse and unexpected shocks, its effect on future options, its lead time, and its effects on equity and social cohesion. These criteria could potentially enable development of multiple stakeholder-specific adaptation pathways through a regional collective action process. The actual implementation of these multiple adaptation pathways will be highly uncertain and politically difficult because of fixity of resource-use rights, unequal distribution of power, value conflicts, and the likely redistribution of benefits and costs. We propose that the approach we outline for building resilient pathways to transformation is a flexible and credible way of negotiating these challenges.

ContributorsAbel, Nick (Author) / Wise, Russell M. (Author) / Colloff, Matthew J. (Author) / Walker, Brian H. (Author) / Butler, James R. A. (Author) / Ryan, Paul (Author) / Norman, Chris (Author) / Langston, Art (Author) / Anderies, John (Author) / Gorddard, Russell (Author) / Dunlop, Michael (Author) / O'Connell, Deborah (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016
128315-Thumbnail Image.png
Description

Many recent studies observe the increasing importance, influence, and analysis of resilience as a concept to understand the capacity of a system or individual to respond to change. The term has achieved prominence in diverse scientific fields, as well as public discourse and policy arenas. As a result, resilience has

Many recent studies observe the increasing importance, influence, and analysis of resilience as a concept to understand the capacity of a system or individual to respond to change. The term has achieved prominence in diverse scientific fields, as well as public discourse and policy arenas. As a result, resilience has been referred to as a boundary object or a bridging concept that is able to facilitate communication and understanding across disciplines, coordinate groups of actors or stakeholders, and build consensus around particular policy issues. We present a network analysis of bibliometric data to understand the extent to which resilience can be considered as a boundary object or a bridging concept in terms of its links across disciplines and scientific fields. We analyzed 994 papers and 35,952 citations between them to reveal the connectedness and links between and within fields. We analyzed the network according to different fields, modules, and sub-fields, showing a highly clustered citation network. Analyzing betweenness allowed us to identify how particular papers bridge across fields and how different fields are linked. With the exception of a few specific papers, most papers cite exclusively within their own field. We conclude that resilience is to an extent a boundary object because there are shared understandings across diverse disciplines and fields. However, it is more limited as a bridging concept because the citations across fields are concentrated among particular disciplines and papers, so the distinct fields do not widely or routinely refer to each other. There are some signs of resilience being used as an interdisciplinary concept to bridge scientific fields, particularly in social-ecological systems, which may itself constitute an emerging sub-field.

ContributorsBaggio, Jacopo (Author) / Brown, Katrina (Author) / Hellebrandt, Denis (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015
128326-Thumbnail Image.png
Description

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and multi-level processes become more important. Here, we argue that addressing these multi-scale and multi-level challenges requires a collection of theories and models. We suggest that the conceptual domains of sustainability, resilience, and robustness provide a sufficiently rich collection of theories and models, but overlapping definitions and confusion about how these conceptual domains articulate with one another reduces their utility. We attempt to eliminate this confusion and illustrate how sustainability, resilience, and robustness can be used in tandem to address the multi-scale and multi-level challenges associated with global change.

ContributorsAnderies, John (Author) / Folke, Carl (Author) / Walker, Brian (Author) / Ostrom, Elinor (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
128141-Thumbnail Image.png
Description

A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels

A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a “coding duality” in which there are accumulation and consensus formation processes distinguished by different timescales.

ContributorsDaniels, Bryan (Author) / Flack, Jessica (Author) / Krakauer, David (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2017-06-06
128166-Thumbnail Image.png
Description

At the end of the dark ages, anatomy was taught as though everything that could be known was known. Scholars learned about what had been discovered rather than how to make discoveries. This was true even though the body (and the rest of biology) was very poorly understood. The renaissance

At the end of the dark ages, anatomy was taught as though everything that could be known was known. Scholars learned about what had been discovered rather than how to make discoveries. This was true even though the body (and the rest of biology) was very poorly understood. The renaissance eventually brought a revolution in how scholars (and graduate students) were trained and worked. This revolution never occurred in K-12 or university education such that we now teach young students in much the way that scholars were taught in the dark ages, we teach them what is already known rather than the process of knowing. Citizen science offers a way to change K-12 and university education and, in doing so, complete the renaissance. Here we offer an example of such an approach and call for change in the way students are taught science, change that is more possible than it has ever been and is, nonetheless, five hundred years delayed.

Created2016-03-01