Matching Items (97)
152427-Thumbnail Image.png
Description
Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior

Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior in the direction and magnitude that supports reserve objectives. Further, a marine reserve is just one component in a larger coupled social-ecological system. The social, economic, political, and biological landscape all determine the social acceptability of a reserve, conflicts that arise, how the reserve interacts with existing fisheries management, accuracy of reserve monitoring, and whether the reserve is ultimately able to meet conservation and fishery enhancement goals. Just as the social-ecological landscape is critical at all stages for marine reserve, from initial establishment to maintenance, the reserve in turn interacts with biological and human use dynamics beyond its borders. Those interactions can lead to the failure of a reserve to meet management goals, or compromise management goals outside the reserve. I use a bio-economic model of a fishery in a spatially patchy environment to demonstrate how the pre-reserve fisheries management strategy determines the pattern of fishing effort displacement once the reserve is established, and discuss the social, political, and biological consequences of different patterns for the reserve and the fishery. Using a stochastic bio-economic model, I demonstrate how biological and human use connectivity can confound the accurate detection of reserve effects by violating assumptions in the quasi-experimental framework. Finally, I examine data on recreational fishing site selection to investigate changes in response to the announcement of enforcement of a marine reserve in the Gulf of California, Mexico. I generate a scale of fines that would fully or partially protect the reserve, providing a data-driven way for managers to balance biological and socio-economic goals. I suggest that natural resource managers consider human use dynamics with the same frequency, rigor, and tools as they do biological stocks.
ContributorsFujitani, Marie (Author) / Abbott, Joshua (Thesis advisor) / Fenichel, Eli (Thesis advisor) / Gerber, Leah (Committee member) / Anderies, John (Committee member) / Arizona State University (Publisher)
Created2014
135560-Thumbnail Image.png
Description
This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.
ContributorsAmrelia, Divya Vikas (Author) / Brafman, David (Thesis director) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137493-Thumbnail Image.png
DescriptionThis paper provides an analysis of the differences in impacts made by companies that promote their sustainability efforts. A comparison of companies reveals that the ones with greater supply chain influence and larger consumer bases can make more concrete progress in terms of accomplishment for the sustainability realm.
ContributorsBeaubien, Courtney Lynn (Author) / Anderies, John (Thesis director) / Allenby, Brad (Committee member) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
141461-Thumbnail Image.png
Description
In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they

In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they typically require additional training (for example, scholars have to learn how to use the command line) or are difficult to automate without programming skills. The Giles Ecosystem is a distributed system based on Apache Kafka that allows users to upload documents for text and image extraction. The system components are implemented using Java and the Spring Framework and are available under an Open Source license on GitHub (https://github.com/diging/).
ContributorsLessios-Damerow, Julia (Contributor) / Peirson, Erick (Contributor) / Laubichler, Manfred (Contributor) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2017-09-28
141468-Thumbnail Image.png
Description

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that are more specific to the archaeological cases: i) societal choices are influenced by robustness–vulnerability trade-offs, ii) there is interplay between robustness–vulnerability trade-offs and robustness–performance trade-offs, iii) societies often get locked in to particular strategies, and iv) multiple positive feedbacks escalate the perceived cost of societal change. We then discuss whether these lock-in traps can be prevented or whether the risks associated with them can be mitigated. We conclude by highlighting how these long-term historical studies can help us to understand current society, societal practices, and the nexus between ecology and society.

ContributorsSchoon, Michael (Author) / Fabricius, Christo (Author) / Anderies, John (Author) / Nelson, Margaret (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
141471-Thumbnail Image.png
Description

What relationships can be understood between resilience and vulnerability in social-ecological systems? In particular, what vulnerabilities are exacerbated or ameliorated by different sets of social practices associated with water management? These questions have been examined primarily through the study of contemporary or recent historic cases. Archaeology extends scientific observation beyond

What relationships can be understood between resilience and vulnerability in social-ecological systems? In particular, what vulnerabilities are exacerbated or ameliorated by different sets of social practices associated with water management? These questions have been examined primarily through the study of contemporary or recent historic cases. Archaeology extends scientific observation beyond all social memory and can thus illuminate interactions occurring over centuries or millennia. We examined trade-offs of resilience and vulnerability in the changing social, technological, and environmental contexts of three long-term, pre-Hispanic sequences in the U.S. Southwest: the Mimbres area in southwestern New Mexico (AD 650–1450), the Zuni area in northern New Mexico (AD 850–1540), and the Hohokam area in central Arizona (AD 700–1450). In all three arid landscapes, people relied on agricultural systems that depended on physical and social infrastructure that diverted adequate water to agricultural soils. However, investments in infrastructure varied across the cases, as did local environmental conditions. Zuni farming employed a variety of small-scale water control strategies, including centuries of reliance on small runoff agricultural systems; Mimbres fields were primarily watered by small-scale canals feeding floodplain fields; and the Hohokam area had the largest canal system in pre-Hispanic North America. The cases also vary in their historical trajectories: at Zuni, population and resource use remained comparatively stable over centuries, extending into the historic period; in the Mimbres and Hohokam areas, there were major demographic and environmental transformations. Comparisons across these cases thus allow an understanding of factors that promote vulnerability and influence resilience in specific contexts.

ContributorsNelson, Margaret (Author) / Kintigh, Keith (Author) / Abbott, David (Author) / Anderies, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01
131790-Thumbnail Image.png
Description
Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used

Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used as a factor to asses cell viability in an in-line assay. Siloxane based pO2 sensing nanoprobes present a modality to visualize intracellular pO2. Using fluorescent lifetime imaging microscopy (FLIM), pO2 levels can be mapped intracellular as a highly functional in-line assay for cell viability. FLIM is an imaging modality that reconstructs an image based of its fluorescent lifetime. Nanoprobes were synthesized in different manufacturing/storage conditions. The nanoprobes for both long- and short-term storage were characterized in a cell free environment testing for changes in fluorescent intensity, average and maximum nanoprobe diameter. The nanoprobes were validated in two different culture systems, 2D and microcarrier culture systems, for human derived neural progenitor cells (NPCs) and neurons. Long- and short-term storage nanoprobes were used to label different neuronal based culture systems to asses labeling efficiency through fluorescent microscopy and flow cytometry. NPCs and neurons in each culture system was tested to see if nanoprobe labeling effected cellular phenotype for traits such as: cell proliferation, gene expression, and calcium imaging. Long-term and short-term storage nanoprobes were successfully validated for both NPCs and neurons in all culture systems. Assessments of the pO2 sensing nanoprobes will be further developed to create a highly functional and efficient in-line test for cell viability.
ContributorsLeyasi, Salma (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131688-Thumbnail Image.png
Description
Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s

Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s is a multifactorial disease, giving rise to two main types: familial AD (FAD) and sporadic AD (SAD). Although there are different factors associated with each type of the disease, both FAD and SAD result in neuronal and synaptic loss and remain difficult to model in-vitro and treat overall.

Current advances in cellular models of neurodegenerative diseases overcome a variety of limitations possessed in animal and post-mortem human models. Human-induced pluripotent stem cells (hiPSCs) provide a platform with cells that can self-renew and differentiate into mature and functional cell types. HiPSCs are at the forefront of neurodegenerative disease research because of their ability to differentiate into neural cell types. Apolipoprotein E (ApoE) is a protein encoded by the APOE gene found on chromosome 19 of the human genome. There are three common polymorphisms in the APOE gene, resulting from a single amino acid change in the protein. The presence of these polymorphisms are studied as associated risk factors of developing AD. Different combinations of these alleles closely relate to the risk a patient has in developing Alzheimer’s disease. The risk associated effects of this gene are primarily investigated, however the protective effects are not examined to the same extent.

This research aims to overcome the existing limitations in cell differentiations and improve cell population purity that limits the variables present in the culture. To do this, this study optimized a differentiation protocol by separating and purifying neuronal cell populations to study the potential protective effects associated with ApoE, a risk factor seen in SAD. This platform aims to use a purified cell population to effectively analyze cell type specific affects of the ApoE risk factor, specifically in neurons.
ContributorsFrisch, Carlye Arin (Author) / Brafman, David (Thesis director) / Tian, Xiaojun (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05