Matching Items (41)
Filtering by

Clear all filters

175244-Thumbnail Image.jpg
Description

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation. The turquoise shaded region represents the prospective ectoderm, the lavender shaded region represents the prospective mesoderm, the dark blue shaded region represents the prospective endoderm, and the white shaded region represents the prospective extraembryonic area.

Created2014-02-26
175247-Thumbnail Image.jpg
Description

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring. Compared to the molecular structure of estriol, the molecular structure of estradiol is missing one oxygen-hydrogen or OH group, and estrone lacks the OH group, and one hydrogen molecule that results in a double bonded oxygen atom. These steroid hormones bind to specific cell receptor molecules and induce transcriptional changes in cells. The production of estriol increases during pregnancy, estradiol production increases during stages of the menstrual cycle, and estrone levels increase during menopause. The differing bonds and chemical arrangements enable scientists to determine the different concentrations of the molecules.

Created2017-05-18
Description

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor.

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor. Those eggs are fertilized with carefully selected sperm in a petri dish. Those fertilized eggs are allowed to divide and grow in the dish for four days, at which point the trained professional inserts those eggs into the uterus of a female so she can carry the pregnancy.

Created2021-08-13
175253-Thumbnail Image.jpg
Description

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c)

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm. During the neurula stage of all vertebrate embryos (a), the neural crest is located in two places on the neural plate. As the neural tube forms (b), a process called neurulation, the neural crest moves with the folding plate as it forms the junction between the neural and epidermal ectoderm. NCCs migrate differently in different classes of vertebrates (c-f). For instance, in rats (c), the NCCs migrate away from the neural crest before neurulation completes and while the neural fold is still open. In birds (d and f), neural crest cells do not migrate until the neural fold closes. In amphibians (e and f), the neural crest cells migrate after neurulation completes, and only after the cells have accumulated above the neural tube. Subsequently, NCCs will all migrate down their specialized pathways and diversify into the several sub-types of NCCs.

Created2014-08-21
175256-Thumbnail Image.jpg
Description

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase. But when DNA replicates itself, supercoils condense further into visible chromosomes with diameters of about 1400 nm. The X- and Y-chromosomes carry the genetic information that determines the sex of many types of animals. The Y-chromosome contains a gene called the sex-determining region Y, or the SRY gene in humans. If a fertilized egg, called a zygote, has the SRY gene, the zygote develops normally into an adult organism with male sex traits. Zygotes without the SRY gene develop to have female traits. Zygotes with Y-chromosomes but mutated SRY genes can develop into adult organisms that have female traits.

Created2017-02-06
175265-Thumbnail Image.jpg
Description

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein.

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Created2017-02-06