Matching Items (143)
Filtering by

Clear all filters

128679-Thumbnail Image.png
Description

Myxoma virus (MYXV) is Leporipoxvirus that possesses a specific rabbit‐restricted host tropism but exhibits a much broader cellular host range in cultured cells. MYXV is able to efficiently block all aspects of the type I interferon (IFN)‐induced antiviral state in rabbit cells, partially in human cells and very poorly in

Myxoma virus (MYXV) is Leporipoxvirus that possesses a specific rabbit‐restricted host tropism but exhibits a much broader cellular host range in cultured cells. MYXV is able to efficiently block all aspects of the type I interferon (IFN)‐induced antiviral state in rabbit cells, partially in human cells and very poorly in mouse cells. The mechanism(s) of this species‐specific inhibition of type I IFN‐induced antiviral state is not well understood. Here we demonstrate that MYXV encoded protein M029, a truncated relative of the vaccinia virus (VACV) E3 double‐stranded RNA (dsRNA) binding protein that inhibits protein kinase R (PKR), can also antagonize the type I IFN‐induced antiviral state in a highly species‐specific manner. In cells pre‐treated with type I IFN prior to infection, MYXV exploits M029 to overcome the induced antiviral state completely in rabbit cells, partially in human cells, but not at all in mouse cells. However, in cells pre‐infected with MYXV, IFN‐induced signaling is fully inhibited even in the absence of M029 in cells from all three species, suggesting that other MYXV protein(s) apart from M029 block IFN signaling in a speciesindependent manner. We also show that the antiviral state induced in rabbit, human or mouse cells by type I IFN can inhibit M029‐knockout MYXV even when PKR is genetically knocked‐out, suggesting that M029 targets other host proteins for this antiviral state inhibition. Thus, the MYXV dsRNA binding protein M029 not only antagonizes PKR from multiple species but also blocks the type I IFN antiviral state independently of PKR in a highly species‐specific fashion.

Created2017-02-02
131762-Thumbnail Image.png
Description
Objectives: To explore the feasibility and effects of using a meditation mobile app 10-minutes a day for 4-weeks to reduce burnout (primary outcome), improve mindfulness, reduce stress, and depression in physician assistant (PA) students compared to a wait-list control.
Methods: This study was a randomized, wait-list, control trial with assessments

Objectives: To explore the feasibility and effects of using a meditation mobile app 10-minutes a day for 4-weeks to reduce burnout (primary outcome), improve mindfulness, reduce stress, and depression in physician assistant (PA) students compared to a wait-list control.
Methods: This study was a randomized, wait-list, control trial with assessments at baseline and post-intervention (week 4). Participants were asked to meditate using Calm for 10 minutes per day. A p value ≤0.05 was considered statistically significant.
Results: The majority of participants (n=19) stated using Calm helped them cope with the stress of PA school. The intervention group participated in meditation for an average of 76 minutes/week. There were significant differences in all outcomes for the intervention group (all p ≤0.06). There was a significant interaction between group and time factors in emotional exhaustion (p=.016) and depersonalization (p=.025).
Conclusions: Calm is a feasible way to reduce burnout in PA students. Our findings provide information that can be applied to the design of future studies.
ContributorsWorth, Taylor Nicole (Author) / Huberty, Jennifer (Thesis director) / Will, Kristen (Committee member) / Puzia, Megan (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This project aims to tackle two perspectives: to design and express an enzyme that can perform single-molecule modifications for identification, and to determine the inclusion of the last adenosine in mature mRNAs within the metazoan, Caenorhabditis elegans. Starting with the first perspective, the enzymatic group that was utilized was methyltransferases.

This project aims to tackle two perspectives: to design and express an enzyme that can perform single-molecule modifications for identification, and to determine the inclusion of the last adenosine in mature mRNAs within the metazoan, Caenorhabditis elegans. Starting with the first perspective, the enzymatic group that was utilized was methyltransferases. Methyltransferases have gained great interest in biotechnology and academia due to their ability to make single-molecule modifications to a wide variety of biomolecules, ranging from proteins to RNA. Of these methyltransferases, the subset that has the greatest interest for this study are RNA methyltransferases. Of the known RNA methyltransferases, human METTL16 was chosen for this project, due to its ability to modify adenosines at the N6 position (m6A), specificity for its consensus motif, and its promise in chimeric enzymatic complexes. As a result of these properties, this study looks to design METTl16-based complexes for the purpose of identifying single nucleotides in RNA. The second perspective involves pre-mRNA cleavage and polyadenylation of the 3’ untranslated region (3’UTR). Cleavage of pre-mRNAs within C.elegans appears to prefer an adenosine, leading to the term “terminal adenosine” (terminal-A). Since RNA cleavage and polyadenylation is highly conserved across metazoans, we can utilize the model system, C. elegans, to apply our findings to humans. Utilizing METTL16’s ability to modify adenosines, it is theorized that it may be possible to modify the terminal-A in vivo within C. elegans. To confirm the functionality and utilization of METTL16, a novel methodology is currently being developed called the terminal adenosine methylation (TAM) assay. The TAM assay takes advantage of METTL16’s N-terminal RNA binding domain (RBD) and methyltransferase domain – called the “core” – to methylate the terminal adenosine of probe mRNA transcripts prior to cleavage in vivo. To determine if the adenosine is present within mature mRNAs, sequencing will determine if there is a m6A present, confirming that CPSF-3 cleaves either upstream or downstream of the terminal-A. Ultimately, this project focuses on designing METTL16 complexes for mRNA modification, testing the functionality of these constructs in vitro, and developing transgenic C. elegans strains to express the METTL16 complexes. The bioconjugation capabilities of RNA methyltransferases allow for concepts such as the TAM assay to be viable, as well as make way for future prospects of methyltransferases as a biotechnical tool.
ContributorsMurray, Jillian (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05