Matching Items (427)
Filtering by

Clear all filters

147959-Thumbnail Image.png
Description

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal mass ejection. This thesis will show the interaction of photons and protons of various energies with several kilometers of atmosphere.

ContributorsDolghier, Kristian Adrian (Author) / Shovkovy, Igor (Thesis director) / Steinkamp, Brian (Committee member) / Economics Program in CLAS (Contributor) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148231-Thumbnail Image.png
Description

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis project focuses on increasing the rate of vaccination outcomes in a country where people are increasingly busy (less time) and unwilling to get a needle through a new business venture that provides a service that brings vaccinations straight to businesses, making them available for their employees. Through our work with the Founders Lab, our team was able to create this pitch deck.

ContributorsGomez, Isaias Abraham (Co-author) / Hanzlick, Emily (Co-author) / Zatonskiy, Albert (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Silverstein, Taylor (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

We think about hope every day, even if we do not consciously think about it. It is an important part of our lives. It affects our subjective well-being and physical health. Yet, many people do not know the importance of hope and how it can be created within one's self.

We think about hope every day, even if we do not consciously think about it. It is an important part of our lives. It affects our subjective well-being and physical health. Yet, many people do not know the importance of hope and how it can be created within one's self. A workshop was designed to increase the knowledge of hope, primarily for college students. The workshop focused on defining hope, explaining how hope plays a part in a healthy lifestyle, and how to create hope for themselves. This project looked at the Hope Theory, discovered by Charles Snyder, and how it can be measured hope through goal attainment<br/>onattainment.

ContributorsLugo, Kaeli Ann (Author) / Hrncir, Micki (Thesis director) / Sidman, Cara (Committee member) / College of Health Solutions (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149093-Thumbnail Image.png
Description
Bacteria are often regarded s pathogens, with deleterious impacts on the human body. However, it is known that the presence of trillions of bacteria on and in the human body impart beneficial effects on human health. Like a fingerprint, each individual’s microbiome is unique. The composition of bacteria in one

Bacteria are often regarded s pathogens, with deleterious impacts on the human body. However, it is known that the presence of trillions of bacteria on and in the human body impart beneficial effects on human health. Like a fingerprint, each individual’s microbiome is unique. The composition of bacteria in one person’s gut is different from the gut bacteria in another individual. Together, the human gut microbiome is a complex mix of organisms that is commonly referred to as “the second brain.� Its role in the human body goes beyond digestion and immune system function. The health of the microbiome factors into risk for illnesses as diverse as depression, obesity, bowel disorders and autism (Perlmutter et al., 2015). In context of the myriad of bacteria that live on and within the human body, the composition of bacteria in the gut may have the most significant impact on an individual’s well-being. This “superorganism� co-evolved with its host in order to provide essential and mutually beneficial functions (Ragonnaud et al., 2021).

Affecting millions of Americans, depression is one of the leading causes of the Global Burden of Disease (GBD), followed by anxiety (Gibson-Smith et al., 2018). Communication that occurs between the human brain and the gut microbiome has been found to be a major contributor towards mental health. The human gut microbiome is comprised of many microbes that can communicate with the brain through the gut-brain axis. However, factors such as stress and diets can interfere with this process, especially after increasing the permeability of the intestine (Khoshbin et al., 2020). Perturbation of the gut-brain axis has been implicated across a wide scale of neurodegenerative disorders, with respect to psychopathology (Bonaz et al., 2018). The environment of the gut, along with which species reside there, can help determine the link between gut function and disease. Therefore, it may be possible to prevent the degradation of an individual’s immune function and well-being through alteration of the gut microbiome. (abstract)
ContributorsPisarczyk, Nicole (Author) / Penton, Christopher (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151291-Thumbnail Image.png
Description
The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is

The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is reflected in teaching practices, principles, and tools. Much of this digital integration goes unremarked and may not even be explicitly taught. In this qualitative research project, interviews with 18 leading architecture lecturers, professors, and deans from programs across the United States were conducted. These interviews focused on advanced practices of digital architecture, such as the use of digital tools, and how these practices are viewed. These interviews yielded a wealth of information about the uses (and abuses) of advanced digital technologies within the architectural academy, and the results were analyzed using the methods of phenomenology and grounded theory. Most schools use digital technologies to some extent, although this extent varies greatly. While some schools have abandoned hand-drawing and other hand-based craft almost entirely, others have retained traditional techniques and use digital technologies sparingly. Reasons for using digital design processes include industry pressure as well as the increased ability to solve problems and the speed with which they could be solved. Despite the prevalence of digital design, most programs did not teach related design software explicitly, if at all, instead requiring students (especially graduate students) to learn to use them outside the design studio. Some of the problems with digital design identified in the interviews include social problems such as alienation as well as issues like understanding scale and embodiment of skill.
ContributorsAlqabandy, Hamad (Author) / Brandt, Beverly (Thesis advisor) / Mesch, Claudia (Committee member) / Newton, David (Committee member) / Arizona State University (Publisher)
Created2012
151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
150829-Thumbnail Image.png
Description
In the middle of the 20th century, juried annuals of Native American painting in art museums were unique opportunities because of their select focus on two-dimensional art as opposed to "craft" objects and their inclusion of artists from across the United States. Their first fifteen years were critical for patronage

In the middle of the 20th century, juried annuals of Native American painting in art museums were unique opportunities because of their select focus on two-dimensional art as opposed to "craft" objects and their inclusion of artists from across the United States. Their first fifteen years were critical for patronage and widespread acceptance of modern easel painting. Held at the Philbrook Art Center in Tulsa (1946-1979), the Denver Art Museum (1951-1954), and the Museum of New Mexico Art Gallery in Santa Fe (1956-1965), they were significant not only for the accolades and prestige they garnered for award winners, but also for setting standards of quality and style at the time. During the early years of the annuals, the art was changing, some moving away from conventional forms derived from the early art training of the 1920s and 30s in the Southwest and Oklahoma, and incorporating modern themes and styles acquired through expanded opportunities for travel and education. The competitions reinforced and reflected a variety of attitudes about contemporary art which ranged from preserving the authenticity of the traditional style to encouraging experimentation. Ultimately becoming sites of conflict, the museums that hosted annuals contested the directions in which artists were working. Exhibition catalogs, archived documents, and newspaper and magazine articles about the annuals provide details on the exhibits and the changes that occurred over time. The museums' guidelines and motivations, and the statistics on the award winners reveal attitudes toward the art. The institutions' reactions in the face of controversy and their adjustments to the annuals' guidelines impart the compromises each made as they adapted to new trends that occurred in Native American painting over a fifteen year period. This thesis compares the approaches of three museums to their juried annuals and establishes the existence of a variety of attitudes on contemporary Native American painting from 1946-1960. Through this collection of institutional views, the competitions maintained a patronage base for traditional style painting while providing opportunities for experimentation, paving the way for the great variety and artistic progress of Native American painting today.
ContributorsPeters, Stephanie (Author) / Duncan, Kate (Thesis advisor) / Fahlman, Betsy (Thesis advisor) / Mesch, Claudia (Committee member) / Arizona State University (Publisher)
Created2012
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012