Matching Items (179)
Description

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their ecotoxicity, tendency for soil accumulation, and the emerging concern about their effects on public health. However, plasticizer concentrations in a constructed wetland environment have rarely been studied in the United States, prompting the need for a method of plasticizer quantification in the Tres Rios Constructed Wetlands which are sustained by the effluent of the 91st Avenue Wastewater Treatment Plant in Phoenix, Arizona. The concentrations of four common plasticizer compounds (dimethyl: DMP, diethyl: DEP, di-n-butyl: DnBP, and bis(2-ethylhexyl): DEHP phthalate) at five sites across the wetland surface water were quantified using solid-phase extraction followed by gas chromatography coupled with mass spectrometry (GC/MS). The sampling period included four sample sets taken from March 2022 to September 2022, which gave temporal data in addition to spatial concentration data. Quantification and quality control were performed using internal standard calibration, replicate samples, and laboratory blanks. Higher molecular weight phthalates accumulated in the wetland surface water at significantly higher average concentrations than those of lower molecular weight at a 95% confidence level, ranging from 8 ng/L to 7349 ng/L and 4 ng/L to 27876 ng/L for DnBP and DEHP, respectively. Concentrations for dimethyl phthalate and diethyl phthalate were typically less than 50 ng/L and were often below the method detection limit. Average concentrations of DnBP and DEHP were significantly higher during periods of high temperatures and arid conditions. The spatial distribution of phthalates was analyzed. Most importantly, a method for successful ultra-trace quantification of plasticizers at Tres Rios was established. These results confirm the presence of plasticizers at Tres Rios and a significant seasonal increase in their surface water concentrations. The developed analytical procedure provides a solid foundation for the Wetlands Environmental Ecology Lab at ASU to further investigate plasticizers and contaminants of emerging concern and determine their ultimate fate through volatilization, sorption, photodegradation, hydrolysis, microbial biodegradation, and phytoremediation studies.

ContributorsStorey, Garrett (Author) / Herckes, Pierre (Thesis director) / Childers, Dan (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

There are limited methods and techniques to quantitatively assess protein content in single cells or small cell populations of tissues. The standard protein insulin was used to understand how potential changes in the preparation or co-crystallization process could improve sensitivity and limit of detection through matrix assisted laser desorption ionization

There are limited methods and techniques to quantitatively assess protein content in single cells or small cell populations of tissues. The standard protein insulin was used to understand how potential changes in the preparation or co-crystallization process could improve sensitivity and limit of detection through matrix assisted laser desorption ionization (MALDI) mass spectrometry analysis in Bruker’s Microflex LRF using polydimethylsiloxane (PDMS) reservoirs. In addition, initial imaging tests were performed on Bruker’s RapifleX MALDI Tissuetyper to determine the instrument’s imaging capabilities on proteins of interest through the use of a single layer “Christmas tree” microfluidic device, with the aim of applying a similar approach to future tissue samples. Data on 2µM insulin determined that a 95% laser power in the Microflex corresponded to 12-15% laser power in the RapifleX. Based on the experiments with insulin, the process of mixing insulin and saturated ɑ-Cyano-4-hydroxycinnamic acid (HCCA) matrix solvent in a 1:1 ratio using 10mM sodium phosphate buffer under area analysis is most optimized with a limit of detection value of 110 nM. With this information, the future aim is to apply this method to a double layer Christmas tree device in order to hopefully quantitatively analyze and image protein content in single or small cell populations.

ContributorsKow, Keegan (Author) / Ros, Alexandra (Thesis director) / Borges, Chad (Committee member) / Cruz-Villarreal, Jorvani (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168356-Thumbnail Image.png
Description
Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly

Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly attacks the commensal bacteria and leads to inflammation. We studied antibody response of 100 Crohn’s disease (CD), 100 ulcerative colitis (UC) and 100 healthy controls against 1,173 bacterial and 397 viral proteins. We found some anti-bacterial antibodies higher in CD compared to controls while some antibodies lower in UC compared to controls. We were able to build biomarker panels with AUCs of 0.81, 0.87, and 0.82 distinguishing CD vs. control, UC vs. control, and CD vs. UC, respectively. Subgroup analysis based on the Montreal classification revealed that penetrating CD behavior (B3), colonic CD location (L2), and extensive UC (E3) exhibited highest antibody reactivity among all patients. We also wanted to study the reason for the presence of autoantibodies in the sera of healthy individuals. A meta-analysis of 9 independent biomarker study was performed to find 77 common autoantibodies shared by healthy individuals. There was no gender bias; however, the number of autoantibodies increased with age, plateauing around adolescence. Molecular mimicry likely contributed to the elicitation of a subset of these common autoantibodies as 21 common autoantigens had 7 or more ungapped amino acid matches with viral proteins. Intrinsic properties of protein like hydrophilicity, basicity, aromaticity, and flexibility were enriched for common autoantigens. Subcellular localization and tissue expression analysis indicated the sequestration of some autoantigens from circulating autoantibodies can explain the absence of autoimmunity in these healthy individuals.
ContributorsShome, Mahasish (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
162718-Thumbnail Image.png
Description

Animals use diverse signal types (e.g. visual, auditory) to honestly advertise their genotypic and/or phenotypic quality to prospective mates or rivals. Behavioral displays and other dynamically updateable signals (e.g. songs, vibrations) can reliably reveal an individual’s quality in real-time, but it is unclear whether more fixed traits like feather coloration,

Animals use diverse signal types (e.g. visual, auditory) to honestly advertise their genotypic and/or phenotypic quality to prospective mates or rivals. Behavioral displays and other dynamically updateable signals (e.g. songs, vibrations) can reliably reveal an individual’s quality in real-time, but it is unclear whether more fixed traits like feather coloration, which is often developed months before breeding, still reveal an individual’s quality at the time of signal use. To address this gap, we investigated if various indices of health and condition – including body condition (residual body mass), poxvirus infection, degree of habitat urbanization, and circulating levels of ketones, glucose, vitamins, and carotenoids – were related to the expression of male plumage coloration at the start of the spring breeding season in wild male house finches (Haemorhous mexicanus), a species in which many studies have demonstrated a link between plumage redness and the health and condition of individuals at the time the feathers are grown in late summer and autumn. We found that, at the time of pair formation, plumage hue was correlated with body condition, such that redder males were in better condition (i.e. higher residual mass). Also, as in previous studies, we found that rural males had redder plumage; however, urban males had more saturated plumage. In sum, these results reveal that feather coloration developed long before breeding still can be indicative to choosy mates of a male’s current condition and suggest that females who prefer to mate with redder males may also gain proximate material benefits (e.g. better incubation provisioning) by mating with these individuals in good current condition.

ContributorsDepinto, Kathryn (Author) / McGraw, Kevin (Thesis director) / Sweazea, Karen (Committee member) / Webb, Emily (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2021-12
168737-Thumbnail Image.png
Description
Transient protein-protein and protein-molecule interactions fluctuate between associated and dissociated states. They are widespread in nature and mediate most biological processes. These interactions are complex and are strongly influenced by factors such as concentration, structure, and environment. Understanding and utilizing these types of interactions is useful from both a fundamental

Transient protein-protein and protein-molecule interactions fluctuate between associated and dissociated states. They are widespread in nature and mediate most biological processes. These interactions are complex and are strongly influenced by factors such as concentration, structure, and environment. Understanding and utilizing these types of interactions is useful from both a fundamental and design perspective. In this dissertation, transient protein interactions are used as the sensing element of a biosensor for small molecule detection. This is done by using a transcription factor-small molecule pair that mediates the activation of a CRISPR/Cas12a complex. Activation of the Cas12a enzyme results in an amplified readout mechanism that is either fluorescence or paper based. This biosensor can successfully detect 9 different small molecules including antibiotics with a tuneable detection limit ranging from low µM to low nM. By combining protein and nucleic acid-based systems, this biosensor has the potential to report on almost any protein-molecule interaction, linking this to the intrinsic amplification that is possible when working with nucleic acid-based technologies. The second part of this dissertation focuses on understanding protein-molecule interactions at a more fundamental level, and, in so doing, exploring design rules required to generalize sensors like the ones described above. This is done by training a neural network algorithm with binding data from high density peptide micro arrays incubated with specific protein targets. Because the peptide sequences were chosen simply to evenly, though sparsely, represent all sequence space, the resulting network provides a comprehensive sequence/binding relationship for a given target protein. While past work had shown that this works well on the arrays, here I have explored how well the neural networks thus trained, predict sequence-dependent binding in the context of protein-protein and peptide-protein interactions. Amino acid sequences, either free in solution or embedded in protein structure, will display somewhat different binding properties than sequences affixed to the surface of a high-density array. However, the neural network trained on array sequences was able to both identify binding regions in between proteins and predict surface plasmon resonance-based binding propensities for peptides with statistically significant levels of accuracy.
ContributorsSwingle, Kirstie Lynn (Author) / Woodbury, Neal W (Thesis advisor) / Green, Alexander A (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2022
165974-Thumbnail Image.png
Description

Bioindicators of wildlife health are useful tools for studying the viability of various organisms and populations, and can include a range of phenotypic variables, such as behavior, body size, and physiological parameters, such as circulating hormones and nutrients. Few studies have investigated the utility of total plasma protein as a

Bioindicators of wildlife health are useful tools for studying the viability of various organisms and populations, and can include a range of phenotypic variables, such as behavior, body size, and physiological parameters, such as circulating hormones and nutrients. Few studies have investigated the utility of total plasma protein as a predictor of environmental or nutritional variation among birds, as well as variation across different seasons and life-history stages. Here I examined relationships between plasma protein and season, urbanization, sex, body condition, molt status, and disease state in house finches (Haemorhous mexicanus). I sampled blood from house finches across three seasons (winter, summer and fall 2021) and measured plasma protein levels using a Bradford assay. I also collected data including condition, sex, and poxvirus infection state at capture, as well as fecal samples to assess gut parasitism (coccidiosis). During the fall season I also estimated molt status, as number of actively growing feathers. I found circulating plasma protein concentration to be lower in the fall during molt than during winter or summer. I also found a significant relationship between circulating protein levels and capture site, as well as novel links to molt state and pox presence, with urban birds, those infected with pox, and those in more intense molt having higher protein levels. My results support the hypotheses that plasma protein concentration can be indicative of a bird’s body molt (which demands considerable protein for feather synthesis) and degree of habitat urbanization, although future work is needed to determine why protein levels were higher in virus-infected birds.

ContributorsDrake, Dean (Author) / McGraw, Kevin (Thesis director) / Sweazea, Karen (Committee member) / Jackson, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
193383-Thumbnail Image.png
Description
For cold chain tracking systems, precision and versatility across varying time intervals and temperature ranges remain integral to effective application in clinical, commercial, and academic settings. Therefore, while electronic and chemistry/physics based cold chain tracking mechanisms currently exist, both have limitations that affect their application across various biospecimens and commercial

For cold chain tracking systems, precision and versatility across varying time intervals and temperature ranges remain integral to effective application in clinical, commercial, and academic settings. Therefore, while electronic and chemistry/physics based cold chain tracking mechanisms currently exist, both have limitations that affect their application across various biospecimens and commercial products, providing the initiative to develop a time temperature visual indicator system that resolves challenges with current cold chain tracking approaches. As a result, a permanganate/oxalic acid time temperature visual indicator system for cold chain tracking has been proposed. At thawing temperatures, the designed permanganate/oxalic acid reaction system undergoes a pink to colorless transition as permanganate, Mn(VII), is reduced to auto-catalytic Mn(II), while oxalate is oxidized to CO2. Therefore, when properly stored and vitrified or frozen, the proposed visual indicator remains pink, whereas exposure to thawing conditions will result in an eventual, time temperature dependent, designed color transition that characterizes compromised biospecimen integrity. To design visual indicator systems for targeted times at specific temperatures, absorbance spectroscopy was utilized to monitor permanganate kinetic curves by absorbance at 525 nm. As a result, throughout the outlined research, the following aims were demonstrated: (i) Design and functionality of 1x (0.5 mM KMnO4) visual indicator systems across various time intervals at temperatures ranging from 25°C to -20°C, (ii) Design and functionality of high concentration, 5x, visual indicator systems across varying targeted time intervals at temperatures ranging from 25°C to 0°C, (iii) Pre-activation stability and long-term stability of the proposed visual indicator systems.
ContributorsLjungberg, Emil (Author) / Borges, Chad (Thesis advisor) / Levitus, Marcia (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2024
193377-Thumbnail Image.png
Description
Insulator-based dielectrophoresis (iDEP) has attracted considerable attention due to its ability to precisely capture and manipulate nanoparticles and biomolecules. A distinctive approach for effective manipulation of nanometer-sized proteins employing iDEP technique by generating higher electric field (E) and gradient (??2) in the iDEP microfluidic devices is delineated. Strategies to generate

Insulator-based dielectrophoresis (iDEP) has attracted considerable attention due to its ability to precisely capture and manipulate nanoparticles and biomolecules. A distinctive approach for effective manipulation of nanometer-sized proteins employing iDEP technique by generating higher electric field (E) and gradient (??2) in the iDEP microfluidic devices is delineated. Strategies to generate higher ??2 in the iDEP devices were outlined using numerical simulations. Intriguingly, the numerical simulation results demonstrated that by decreasing the post-to-post gap in the iDEP microfluidic devices, the ??2 was increased by ⁓12 fold. Furthermore, the inclusion of channel constrictions, such as rectangular constriction or curved constriction into the straight channel iDEP microfluidic device led to a significant increase in ??2. In addition, the inclusion of rectangular constrictions in the straight channel iDEP microfluidic device resulted in a greater increase in ??2 compared to the incorporation of curved constrictions in the same device. Moreover, the straight channel device with horizontal post-to-post gap of 20 μm and vertical post-to-post gap of 10 μm generated the lowest ??2 and the ??2 was uniform across the device. The rectangular constriction device with horizontal and vertical post-to-post gap of 5 μm generated the highest ??2 and the ??2 was non-uniform across the device. Subsequently, suitable candidate devices were fabricated using soft lithography as well as high resolution 3D printing and the DEP behavior of ferritin examined under various experimental conditions. Positive streaming DEP could be observed for ferritin at low frequency in the device generating the lowest ??2, whereas at higher frequency of 10 kHz no DEP trapping characteristics were apparent in the same device. Importantly, in the device geometry resulting in the highest ??2 at 10 kHz, labeled ferritin exhibited pDEPtrapping characteristics. This is an indication that the DEP force superseded diffusion and became the dominant force.
ContributorsMAHMUD, SAMIRA (Author) / Ros, Alexandra (Thesis advisor) / Borges, Chad (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2024
Description
Background: Eosinophilic esophagitis (EoE) is an increasingly prevalent allergic disease characterized by eosinophilic inflammation and symptoms of esophageal dysfunction. Diagnosis and monitoring require repeated, invasive endoscopic esophageal biopsies to assess levels of eosinophilic inflammation. Recently, the minimally invasive esophageal string test (EST) has been used collect protein in mucosal secretions

Background: Eosinophilic esophagitis (EoE) is an increasingly prevalent allergic disease characterized by eosinophilic inflammation and symptoms of esophageal dysfunction. Diagnosis and monitoring require repeated, invasive endoscopic esophageal biopsies to assess levels of eosinophilic inflammation. Recently, the minimally invasive esophageal string test (EST) has been used collect protein in mucosal secretions as a surrogate for tissue biopsies in monitoring disease activity. From the string, assessment of the eosinophil-associated proteins major basic protein-1 (MBP-1) and eotaxin-3 (Eot3) is used to assess disease activity; however, this requires measurement in a reference laboratory, for which the turnaround time for results exceeds the time required for histopathologic assessment of endoscopic biopsies. In addition, MBP-1 and Eot3 are not markers unique to eosinophils. These obstacles can be overcome by targeting eosinophil peroxidase (EPX), an eosinophil-specific protein, using a rapid point-of-care test. Currently, EPX is measured by a labor-intensive enzyme-linked immunosorbent assay (ELISA), but we sought to optimize a rapid point-of-care test to measure EPX in EST segments. Methods: We extracted protein from residual EST segments and measured EPX levels by ELISA and a lateral flow assay (LFA). Results: EPX levels measured by LFA strongly correlated with those quantified by ELISA (rs = 0.90 {95% CI: 0.8283, 0.9466}). The EPX LFA is comparable to ELISA for measuring EPX levels in ESTs. Conclusions: The EPX LFA can provide a way to rapidly test EPX levels in ESTs in clinical settings and may serve as a valuable tool to facilitate diagnosis and monitoring of EoE.
ContributorsDao, Adelyn (Author) / Lake, Douglas (Thesis director) / Borges, Chad (Committee member) / Wright, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor)
Created2024-05
193394-Thumbnail Image.png
Description
Alzheimer’s Disease (AD) is the most common form of dementia affecting the population over the age of 65. AD is characterized clinically by increasing difficulty with memory and language, resulting in a loss of independence. This is due to the presence of two characteristic protein aggregates in the brain: extracellular

Alzheimer’s Disease (AD) is the most common form of dementia affecting the population over the age of 65. AD is characterized clinically by increasing difficulty with memory and language, resulting in a loss of independence. This is due to the presence of two characteristic protein aggregates in the brain: extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Utilizing multiplexed immunofluorescence and dimensional reduction analysis the types of cells present in the hippocampus, the region of the brain most affected by AD, can be explored. Understanding the kinds of cell subtypes present, the mechanism behind how AD develops can be explored. Multiplexed IF was performed on human hippocampus FFPE tissues to detect a total of 37 proteins. Dimensional reduction analysis was performed to identify the four major cell types in the brain: neurons, oligodendrocytes, astrocytes, and microglia. After identifying each cell type, further dimensional reduction analysis was performed within each cell type to identify cell subtypes. A total of 21 neuron, 41 oligodendrocyte, 20 astrocyte, and 22 microglia subtypes were identified. The location of cell subtypes in each region of the hippocampal formation was found to match previous reports, further validating the findings of this project.
ContributorsEllison, Mischa A (Author) / Guo, Jia (Thesis advisor) / Borges, Chad (Committee member) / Mastroeni, Diego (Committee member) / Arizona State University (Publisher)
Created2024