Matching Items (95)
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
137656-Thumbnail Image.png
Description
Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella

Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella as anti-cancer agents is their toxicity at the dose required for therapeutic efficacy, but reducing the dose results in diminished efficacy. In this project, we explored novel means to reduce the toxicity of the recombinant attenuated Salmonella by genetically engineering those virulence factors to facilitate maximal colonization of tumor tissues and reduced fitness in normal tissues. We have constructed two sets of Salmonella strains. In the first set, each targeted gene was knocked out by deletion of the gene. In the second set, the predicted promoter region of each gene was replaced with a rhamnose-regulated promoter, which will cease the synthesis of these genes in vivo, a rhamnose-free environment.
ContributorsBenson, Lee Samuel (Author) / Kong, Wei (Thesis director) / Martin, Thomas (Committee member) / Lake, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Center for Infectious Diseases and Vaccinology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
132490-Thumbnail Image.png
Description
Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has long been shown to have inherent tumor targeting properties and have been able to penetrate and exist in all aspects of the tumor environment, something that chemotherapy is unable to achieve. This lab has developed a genetically modified Salmonella typhimurium (GMS) which is able to deliver DNA vaccines or synthesized proteins directly to tumor sites. These GMS strains have been used to deliver human TNF-related apoptosis inducing ligand (TRAIL) protein directly to tumor sites, but expression level was limited. It is the hope of the experiment that codon optimization of TRAIL to S. typhimurium preferred codons will lead to increased TRAIL expression in the GMS. For preliminary studies, BALB/c mice were subcutaneously challenged with CT-26 murine colorectal cancer cells and treated with an intra-tumor injection with either PBS, strain GMS + PCMV FasL (P2), or strain GMS + Pmus FasL). APC/CDX2 mutant mice were also induced to develop human colon polyps and treated with either PBS, strain GMS + vector (P1), P2, or P3. The BALB/c mouse showed statistically significant levels of decreased tumor size in groups treated with P2 or P3. The APC/CDX2 mouse study showed statistically significant levels of decreased colon polyp numbers in groups treated with P3, as expected, but was not significantly significant for groups treated with P1 and P2. In addition, TRAIL was codon optimized for robust synthesis in Salmonella. The construct will be characterized and evaluated in vitro and in vivo. Hopefully, the therapeutic effect of codon optimized TRAIL will be maximal while almost completely minimizing any unintended side effects.
ContributorsCrawford, Courtney Rose (Co-author) / Crawford, Courtney (Co-author) / Kong, Wei (Thesis director) / Shi, Yixin (Committee member) / Fu, Lingchen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134442-Thumbnail Image.png
Description
Many pathogens are bacteria and antibiotic resistance is increasing. The development of novel treatments is hampered by a poor understanding of the mechanisms of their regulation. Specifically, non-coding RNAs play an important role in the internal regulation of bacteria. To further the investigation of non-coding RNA and pathogenicity, RNA sequencing

Many pathogens are bacteria and antibiotic resistance is increasing. The development of novel treatments is hampered by a poor understanding of the mechanisms of their regulation. Specifically, non-coding RNAs play an important role in the internal regulation of bacteria. To further the investigation of non-coding RNA and pathogenicity, RNA sequencing data for PorX/PorY dependent regulation in P. gingivalis, a Gram negative oral pathogen was studied. The PorX/PorY two component regulatory system controls phenotypes for this bacteria's virulence including an important type IX secretion system for gingipain proteases, which degrades host cytokines, down regulating the host response by reducing inflammation. This study compared transcription of non-coding RNA in wild type and PorX knockout mutant strain, in the 33277 strain and the more virulent W83 strain in both liquid and solid cultures to identify and categorize loci of genomic sequence for further study of porX/porY regulation.
ContributorsHoenack, Michael Anthony (Author) / Kong, Wei (Thesis director) / Shi, Yixin (Committee member) / Lingchen, Fu (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
164929-Thumbnail Image.png
Description

Cancer treatments such as chemotherapy and radiation are expensive, painful, and often ineffective, as they compromise the patient’s immune system. Genetically-modified Salmonella Typhimurium (GMS) strains, however, have been proven to target tumors and suppress tumor growth. The GMS then undergo programmed lysis, optimally leaving no trace of Salmonella in the

Cancer treatments such as chemotherapy and radiation are expensive, painful, and often ineffective, as they compromise the patient’s immune system. Genetically-modified Salmonella Typhimurium (GMS) strains, however, have been proven to target tumors and suppress tumor growth. The GMS then undergo programmed lysis, optimally leaving no trace of Salmonella in the body. Additionally, constant culturing of S. Typhimurium changes the pH of the culture medium. The objective of this research is to investigate using Salmonella to induce changes in the typically acidic tumor microenvironment (TME) pH, ideally hindering tumor growth. Future studies involve utilizing Salmonella to treat a multitude of cancers.

ContributorsFleck, Kiera (Author) / Kong, Wei (Thesis director) / Fu, Lingchen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
Description
Modified Salmonella strains and recombinant DNA in a plasmid are used to construct a Salmonella strain that is dependent on the experimentally inserted plasmid. This construction will be done via lab techniques such as polymerase chain reactions (PCR), transformation, and other means to create this construction. With future successful construction, the inhibition

Modified Salmonella strains and recombinant DNA in a plasmid are used to construct a Salmonella strain that is dependent on the experimentally inserted plasmid. This construction will be done via lab techniques such as polymerase chain reactions (PCR), transformation, and other means to create this construction. With future successful construction, the inhibition of flagella assembly, within the tumor environment, and increased synthesis of flagellin will be possible. In the case that only assembly is prevented, then, the reliance on the lysis system to release flagellin into the tumor microenvironment will be used as a means to induce immune response. With the success of the self-lysis ability, these strains could be used to target these tumor cells to deliver anticancer material as a vaccine delivery system.
ContributorsShagi, Agnel (Author) / Kong, Wei (Thesis director) / Fu, Lingchen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
Description
This thesis project explores the extent to which elected education officials, specifically school board members, with a background in education make policy decisions differently than those who do not have a background in education. This line of questioning began with a project completed in a class I took in the

This thesis project explores the extent to which elected education officials, specifically school board members, with a background in education make policy decisions differently than those who do not have a background in education. This line of questioning began with a project completed in a class I took in the fall semester of 2023 - Innovations in School Democracy, where students chose a critical issue in the education sphere and situated it within the context of civic education. The critical issue I addressed at the time was the significant number of individuals in “high-ranking” positions in the education field who do not appear to have a background in anything education-related, outside of their own schooling. The issue lies with the fact that these individuals are making large scale policy decisions that impact all students, teachers, parents, and school faculty members within their district without having any research or practice-based educational foundation or experience to draw upon for their decision making. For the purpose of this thesis, I expanded this phenomenon beyond the realm of civic education by performing a comparative analysis of elected education official decision-making between school boards that have members with educational backgrounds and those who don’t, in addition to analyzing the stances and policies of the Superintendent of Public Instruction. The goal of this analysis is to see how, or if, decisions differ and to what extent those decisions appear to be driven by current political ideologies versus educational research and best practices. I hypothesize that elected education officials who have a background in education will make decisions that are more student- and educator-focused and have fewer indicators of a specific partisan political ideology. Conversely, I hypothesize the opposite for decision-making by officials without an education background, where I expect to find more evidence of influential partisan political ideology. In order to determine if a decision-making gap exists, I examined school board websites and pulled district-related news articles in order to cross-analyze the verbiage on specific political buzzwords or phrases that could be clearly linked to a political party’s ideology or stance on public schooling matters and policies. I performed a similar search through the campaign platform and current Arizona Education System biographical page for Superintendent Tom Horne. To begin this investigation, thirty school districts in the state of Arizona were selected for preliminary research - ten small districts, ten medium-size districts, and ten large districts. Through the use of school district websites and the biographies of school board members, I determined which school boards had individuals with a background in education and which did not. From there, two school boards from each district size category were selected for examination - one board categorized as having a strong educational background presence and one board that either had very minimal presence, or none at all. From this research, I intended to present preliminary findings about the extent to which differences in policy-making decisions relate to school board member education background and experience, as well as the degree to which explicit partisan politicization appears to influence such decisions. Upon completion of this limited research, my findings ended up deriving more directly from the mission and vision statements of school districts and school boards, though policy decisions were still loosely analyzed through district media articles. However, my research on Superintendent Horne lent itself well to answer all three of my proposed research questions.
ContributorsGraves, Olivia (Author) / Hermanns, Carl (Thesis director) / Schugurensky, Daniel (Committee member) / Bartlett, Tara (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / Department of Psychology (Contributor)
Created2024-05
154744-Thumbnail Image.png
Description
Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building

Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of the stock and as well as the spatial distribution of use throughout the city. In this dissertation, a case study in Los Angeles County, California (LAC) is used to quantify urban growth, forecast future energy use under climate change, and to make recommendations for mitigating energy consumption increases. A reproducible methodological framework is included for application to other urban areas.

In LAC, residential electricity demand could increase as much as 55-68% between 2020 and 2060, and building technology lock-in has constricted the options for mitigating energy demand, as major changes to the building stock itself are not possible, as only a small portion of the stock is turned over every year. Aggressive and timely efficiency upgrades to residential appliances and building thermal shells can significantly offset the projected increases, potentially avoiding installation of new generation capacity, but regulations on new construction will likely be ineffectual due to the long residence time of the stock (60+ years and increasing). These findings can be extrapolated to other U.S. cities where the majority of urban expansion has already occurred, such as the older cities on the eastern coast. U.S. population is projected to increase 40% by 2060, with growth occurring in the warmer southern and western regions. In these growing cities, improving new construction buildings can help offset electricity demand increases before the city reaches the lock-in phase.
ContributorsReyna, Janet Lorel (Author) / Chester, Mikhail V (Thesis advisor) / Gurney, Kevin (Committee member) / Reddy, T. Agami (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2016