Matching Items (115)
Filtering by

Clear all filters

130348-Thumbnail Image.png
Description
Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic,

Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic, is not the result of a binomial sampling process because infection events are not independent of each other, we propose the use of an asymptotic distribution of the final size to compute approximate 95% confidence intervals of the observed final size. This allows the comparison of the observed final sizes against predictions based on the modeling study (R = 1.15, 1.40 and 1.90), which also yields simple formulae for determining sample sizes for future seroepidemiological studies. We examine a total of eleven published seroepidemiological studies of H1N1-2009 that took place after observing the peak incidence in a number of countries. Observed seropositive proportions in six studies appear to be smaller than that predicted from R = 1.40; four of the six studies sampled serum less than one month after the reported peak incidence. The comparison of the observed final sizes against R = 1.15 and 1.90 reveals that all eleven studies appear not to be significantly deviating from the prediction with R = 1.15, but final sizes in nine studies indicate overestimation if the value R = 1.90 is used.
Conclusions
Sample sizes of published seroepidemiological studies were too small to assess the validity of model predictions except when R = 1.90 was used. We recommend the use of the proposed approach in determining the sample size of post-epidemic seroepidemiological studies, calculating the 95% confidence interval of observed final size, and conducting relevant hypothesis testing instead of the use of methods that rely on a binomial proportion.
Created2011-03-24
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
154082-Thumbnail Image.png
Description
Yersinia enterocolitica is a major foodborne pathogen found worldwide that causes approximately 87,000 human cases and approximately 1,100 hospitalizations per year in the United States. Y. enterocolitica is a very unique pathogen with the domesticated pig acting as the main animal reservoir for pathogenic bio/serotypes, and as the primary source

Yersinia enterocolitica is a major foodborne pathogen found worldwide that causes approximately 87,000 human cases and approximately 1,100 hospitalizations per year in the United States. Y. enterocolitica is a very unique pathogen with the domesticated pig acting as the main animal reservoir for pathogenic bio/serotypes, and as the primary source of human infection. Similar to other gastrointestinal infections, Yersinia enterocolitica is known to trigger autoimmune responses in humans. The most frequent complication associated with Y. enterocolitica is reactive arthritis - an aseptic, asymmetrical inflammation in the peripheral and axial joints, most frequently occurring as an autoimmune response in patients with the HLA-B27 histocompatability antigen. As a foodborne illness it may prove to be a reasonable explanation for some of the cases of arthritis observed in past populations that are considered to be of unknown etiology. The goal of this dissertation project was to study the relationship between the foodborne illness -Y. enterocolitica, and the incidence of arthritis in individuals with and without contact with the domesticated pig.
ContributorsBrown, Starletta (Author) / Hurtado, Ana M (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2015
152574-Thumbnail Image.png
Description
Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected host populations, and others having evolved to escape the pressures imposed by the rampant use of antimicrobials. It is then critical to improve our understanding of how diseases spread in these modern landscapes, characterized by new host population structures and socio-economic environments, as well as containment measures such as the deployment of drugs. Thus, the motivation of this dissertation is two-fold. First, we study, using both data-driven and modeling approaches, the the spread of infectious diseases in urban areas. As a case study, we use confirmed-cases data on sexually transmitted diseases (STDs) in the United States to assess the conduciveness of population size of urban areas and their socio-economic characteristics as predictors of STD incidence. We find that the scaling of STD incidence in cities is superlinear, and that the percent of African-Americans residing in cities largely determines these statistical patterns. Since disparities in access to health care are often exacerbated in urban areas, within this project we also develop two modeling frameworks to study the effect of health care disparities on epidemic outcomes. Discrepant results between the two approaches indicate that knowledge of the shape of the recovery period distribution, not just its mean and variance, is key for assessing the epidemiological impact of inequalities. The second project proposes to study, from a modeling perspective, the spread of drug resistance in human populations featuring vital dynamics, stochasticity and contact structure. We derive effective treatment regimes that minimize both the overall disease burden and the spread of resistance. Additionally, targeted treatment in structured host populations may lead to higher levels of drug resistance, and if drug-resistant strains are compensated, they can spread widely even when the wild-type strain is below its epidemic threshold.
ContributorsPatterson-Lomba, Oscar (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Towers, Sherry (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
153018-Thumbnail Image.png
Description
Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by which size, heterogeneity and structure shape the general statistical patterns that describe urban economic output are still unclear. Given the rapid rate of urbanization around the globe, we need precise and formal mathematical understandings of these matters. In this context, I perform in this dissertation probabilistic, distributional and computational explorations of (i) how the broadness, or narrowness, of the distribution of individual productivities within cities determines what and how we measure urban systemic output, (ii) how urban scaling may be expressed as a statistical statement when urban metrics display strong stochasticity, (iii) how the processes of aggregation constrain the variability of total urban output, and (iv) how the structure of urban skills diversification within cities induces a multiplicative process in the production of urban output.
ContributorsGómez-Liévano, Andrés (Author) / Lobo, Jose (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Bettencourt, Luis M. A. (Committee member) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
155172-Thumbnail Image.png
Description
The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase.

Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.

In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.

In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.

Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.

The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.
ContributorsPell, Bruce (Author) / Kuang, Yang (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Nagy, John (Committee member) / Kostelich, Eric (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016
156385-Thumbnail Image.png
Description
The Energiewende aims to drastically reduce Germany’s greenhouse gas emissions, without relying on nuclear power, while maintaining a secure and affordable energy supply. Since 2000 the country’s renewable-energy share has increased exponentially, accounting in 2017 for over a third of Germany's gross electricity consumption. This unprecedented achievement is the result

The Energiewende aims to drastically reduce Germany’s greenhouse gas emissions, without relying on nuclear power, while maintaining a secure and affordable energy supply. Since 2000 the country’s renewable-energy share has increased exponentially, accounting in 2017 for over a third of Germany's gross electricity consumption. This unprecedented achievement is the result of policies, tools, and institutional arrangements intended to steer society to a low-carbon economy. Despite its resounding success in renewable-energy deployment, the Energiewende is not on track to meet its decarbonization goals. Energiewende rules and regulations have generated numerous undesired consequences, and have cost much more than anticipated, a burden borne primarily by energy consumers. Why has the Energiewende not only made energy more expensive, but also failed to bring Germany closer to its decarbonization goals? I analyzed the Energiewende as a complex socio-technical system, examining its legal framework and analyzing the consequences of successive regulations; identifying major political and energy players and the factors that motivated them to pursue socio-technical change; and documenting the political trends and events in which the Energiewende is rooted and which continue to shape it. I analyzed the dynamics and the loopholes that created barriers to transition, pushed the utility sector to the brink of dissolution, and led to such undesirable outcomes as negative wholesale prices and forced exports of electricity to Germany’s European neighbors. Thirty high-level energy experts and stakeholders were interviewed to find out how the best-informed members of German society perceive the Energiewende. Surprisingly, although they were highly critical of the way the transition has unfolded, most were convinced that the transition would eventually succeed. But their definitions of success did not always depend on achieving carbon-mitigation targets. Indeed, Germany jeopardizes the achievement of these targets by changing too many policy and institutional variables at too fast a pace. Good intentions and commitment are not enough to create economies based on intermittent energy sources: they will also require intensive grid expansion and breakthroughs in storage technology. The Energiewende demonstrates starkly that collective action driven by robust political consensus is not sufficient for steering complex socio-technical systems in desired directions.
ContributorsSturm, Christine (Author) / Sarewitz, Daniel (Thesis advisor) / Miller, Clark (Committee member) / Anderies, John (Committee member) / Hirt, Paul (Committee member) / Arizona State University (Publisher)
Created2018
129573-Thumbnail Image.png
Description

Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal

Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal mucosa remain unknown. Edwardsiella ictaluri is a primitive member of the Enterobacteriaceae family that causes enteric septicemia in channel catfish (Ictalurus punctatus). E. ictaluri infects and colonizes deep lymphoid tissues upon oral or immersion infection. Both gut and olfactory organs are the primary sites of invasion. At the systemic level, E. ictaluri pathogenesis is relatively well characterized, but our knowledge about E. ictaluri intestinal interaction is limited. Recently, we observed that E. ictaluri oligo-polysaccharide (O-PS) LPS mutants have differential effects on the intestinal epithelia of orally inoculated catfish. Here we evaluate the effects of E. ictaluri O-PS LPS mutants by using a novel catfish intestinal loop model and compare it to the rabbit ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS. We found evident differences in rabbit ileal loop and catfish ileal loop responses to E. ictaluri and S. Typhimurium LPS. We determined that catfish respond to E. ictaluri LPS but not to S. Typhimurium LPS. We also determined that E. ictaluri inhibits cytokine production and induces disruption of the intestinal fish epithelia in an O-PS-dependent fashion. The E. ictaluri wild type and ΔwibT LPS mutant caused intestinal tissue damage and inhibited proinflammatory cytokine synthesis, in contrast to E. ictaluri Δgne and Δugd LPS mutants. We concluded that the E. ictaluri O-PS subunits play a major role during pathogenesis, since they influence the recognition of the LPS by the intestinal mucosal immune system of the catfish. The LPS structure of E. ictaluri mutants is needed to understand the mechanism of interaction.

ContributorsSantander, Javier (Author) / Kilbourne, Jacquelyn (Author) / Park, Jie Yeun (Author) / Martin, Taylor (Author) / Loh, Amanda (Author) / Diaz, Ignacia (Author) / Rojas, Robert (Author) / Segovia, Cristopher (Author) / DeNardo, Dale (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-08-01
129581-Thumbnail Image.png
Description

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of social-ecological systems (SESs) is still underdeveloped. We seek to help fill this gap by exploring some patterns of transformation in SESs and the question of what factors help explain the persistence of cooperation in the use of common-pool resources through transformative change. Through the analysis of 89 forest commons in South Korea that experienced such transformations, we found that there are two broad types of transformation, cooperative and noncooperative. We also found that two system-level properties, transaction costs associated group size and network diversity, may affect the direction of transformation. SESs with smaller group sizes and higher network diversity may better organize cooperative transformations when the existing system becomes untenable.

ContributorsYu, David (Author) / Anderies, John (Author) / Lee, Dowon (Author) / Perez, Irene (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
129510-Thumbnail Image.png
Description

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.

Created2014-07-31