Matching Items (12,179)
Filtering by

Clear all filters

ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
ContributorsZelenak, Kristen (Performer) / Detweiler, Samuel (Performer) / Rollefson, Justin (Performer) / Hong, Dylan (Performer) / Salazar, Nathan (Performer) / Feher, Patrick (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
152073-Thumbnail Image.png
Description
The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen.
ContributorsGutierrez, Angel (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
151747-Thumbnail Image.png
Description
Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt

Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.
ContributorsLolly, Rubben (Author) / Kaloush, Kamil (Thesis advisor) / Bearup, Wylie (Committee member) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151835-Thumbnail Image.png
Description
Unsaturated soil mechanics is becoming a part of geotechnical engineering practice, particularly in applications to moisture sensitive soils such as expansive and collapsible soils and in geoenvironmental applications. The soil water characteristic curve, which describes the amount of water in a soil versus soil suction, is perhaps the most important

Unsaturated soil mechanics is becoming a part of geotechnical engineering practice, particularly in applications to moisture sensitive soils such as expansive and collapsible soils and in geoenvironmental applications. The soil water characteristic curve, which describes the amount of water in a soil versus soil suction, is perhaps the most important soil property function for application of unsaturated soil mechanics. The soil water characteristic curve has been used extensively for estimating unsaturated soil properties, and a number of fitting equations for development of soil water characteristic curves from laboratory data have been proposed by researchers. Although not always mentioned, the underlying assumption of soil water characteristic curve fitting equations is that the soil is sufficiently stiff so that there is no change in total volume of the soil while measuring the soil water characteristic curve in the laboratory, and researchers rarely take volume change of soils into account when generating or using the soil water characteristic curve. Further, there has been little attention to the applied net normal stress during laboratory soil water characteristic curve measurement, and often zero to only token net normal stress is applied. The applied net normal stress also affects the volume change of the specimen during soil suction change. When a soil changes volume in response to suction change, failure to consider the volume change of the soil leads to errors in the estimated air-entry value and the slope of the soil water characteristic curve between the air-entry value and the residual moisture state. Inaccuracies in the soil water characteristic curve may lead to inaccuracies in estimated soil property functions such as unsaturated hydraulic conductivity. A number of researchers have recently recognized the importance of considering soil volume change in soil water characteristic curves. The study of correct methods of soil water characteristic curve measurement and determination considering soil volume change, and impacts on the unsaturated hydraulic conductivity function was of the primary focus of this study. Emphasis was placed upon study of the effect of volume change consideration on soil water characteristic curves, for expansive clays and other high volume change soils. The research involved extensive literature review and laboratory soil water characteristic curve testing on expansive soils. The effect of the initial state of the specimen (i.e. slurry versus compacted) on soil water characteristic curves, with regard to volume change effects, and effect of net normal stress on volume change for determination of these curves, was studied for expansive clays. Hysteresis effects were included in laboratory measurements of soil water characteristic curves as both wetting and drying paths were used. Impacts of soil water characteristic curve volume change considerations on fluid flow computations and associated suction-change induced soil deformations were studied through numerical simulations. The study includes both coupled and uncoupled flow and stress-deformation analyses, demonstrating that the impact of volume change consideration on the soil water characteristic curve and the estimated unsaturated hydraulic conductivity function can be quite substantial for high volume change soils.
ContributorsBani Hashem, Elham (Author) / Houston, Sandra L. (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsRyall, Blake (Performer) / Olarte, Aida (Performer) / Senseman, Stephen (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
ContributorsUhrenbacher, Tina (Performer) / Creviston, Hannah (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22