Matching Items (13,098)
Filtering by

Clear all filters

128172-Thumbnail Image.png
Description

This transdisciplinary study (involving humanities, anthropology, linguistics, and philosophy) contrasts the reductionist ideological “top-down” focus on the construction of our cultural “world” with the meandering technical “bottom-up” approach, searching for forgotten or usually omitted aspects in current studies of culture. The discovery goes from the cultural “thing theory” to semiotics,

This transdisciplinary study (involving humanities, anthropology, linguistics, and philosophy) contrasts the reductionist ideological “top-down” focus on the construction of our cultural “world” with the meandering technical “bottom-up” approach, searching for forgotten or usually omitted aspects in current studies of culture. The discovery goes from the cultural “thing theory” to semiotics, to communication, and to the emergence of human language from the biosemiotic and zoosemiotic processes of communication, in order to examine the impact of these processes on human culture and cultural theories. Finally, based on “heretical ideas” of Jan Patočka and Martin Heidegger, some philosophical implications for the new humanism and for humanities are outlined.

ContributorsVolek, Emil (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06
ContributorsYam, Jessica (Performer) / ASU Library. Music Library (Publisher)
Created2012-03-26
130435-Thumbnail Image.png
Description
The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented

The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground-and space-based observations of local AGNs show that Seyfert class and the "core" (r less than or similar to 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M-20) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this "dustiness" however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.
ContributorsRutkowski, Michael (Author) / Hegel, P. R. (Author) / Kim, Hwihyun (Author) / Windhorst, Rogier (Author) / Tamura, Kazuyuki (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2013-10-28
130434-Thumbnail Image.png
Description
The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited because of the computational requirements for large systems. Methodologies that

The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited because of the computational requirements for large systems. Methodologies that yield strong linear correlations between calculations and experimental data have been reported, however the balance between accuracy and computational cost is always a major issue. In this work, linear correlations (with an R-2 value of up to 0.9990) between DFT-calculated HOMO/LUMO energies and 70 redox potentials from a series of 51 polycyclic aromatic hydrocarbons (obtained from the literature) are presented. The results are compared to previously reported linear correlations that were obtained with a more expensive computational methodology based on a Born-Haber thermodynamic cycle. It is shown in this article that similar or better correlations can be obtained with a simple and cheaper calculation.
Created2013-10-28
130432-Thumbnail Image.png
Description
Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model

Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.
Created2014-06-13
130429-Thumbnail Image.png
Description

There is a substantial literature of correlational findings from studies in developed countries where abortion is legal that are riddled with methodological problems and selective biases that exaggerate post-pregnancy mental health risks of abortion while minimizing risks for unwanted childbearing. Health professionals need to be able to critically evaluate this

There is a substantial literature of correlational findings from studies in developed countries where abortion is legal that are riddled with methodological problems and selective biases that exaggerate post-pregnancy mental health risks of abortion while minimizing risks for unwanted childbearing. Health professionals need to be able to critically evaluate this literature and use caution when generalizing findings across contexts differing in legal grounds for abortion. The impact of diversity in women’s characteristics, circumstances, and reasons for avoiding childbirth has not been adequately incorporated in theory or research seeking to explain the variations that are found in women’s post-abortion mental health. Critical reviews have established that predictors of problems after abortion or childbirth are similar. Further, when a woman has an unwanted pregnancy, i.e., a pregnancy that she does not wish to end in a term birth, the likelihood that she will have post-pregnancy mental health problems is similar regardless of pregnancy outcome (abortion vs. delivery). Selective sampling bias that advantages the delivery group, common risk factors, and confounding of abortion with unintended pregnancy explain the correlation of legal abortion with negative outcomes observed in the literature from developed countries. Meanwhile, documented negative effects of unwanted pregnancy and childbearing are multiple, severe, and long-lasting for mother and child. Changing societal conditions, particularly in developing countries, provide an opportunity for correcting biases and limitations of current research. High quality studies aimed at understanding the varied relationships of unintended pregnancy to mental health outcomes –both positive and negative– in the context of the diverse circumstances of women’s lives are sorely needed. Such studies can inform the development of programs to re- duce unwanted childbearing and promote pre- and post-pregnancy mental health for all women, regardless of how they choose to end their pregnancy.

ContributorsRusso, Nancy (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor)
Created2014-07-01
130426-Thumbnail Image.png
Description
A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate

A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate how tree cover (TC) has affected LP at large spatial scales in rangelands of contrasting social–economic characteristics in the United States and Argentina. Our models indicate that in areas of high productivity, a 1% increase in TC results in a reduction in LP ranging from 0.6 to 1.6 reproductive cows (Rc) per km[superscript 2]. Mean LP in the United States is 27 Rc per km[superscript 2], so a 1% increase in TC results in a 2.5% decrease in mean LP. This effect is large considering that woody-plant cover has been described as increasing at 0.5% to 2% per y. On the contrary, in areas of low productivity, increased TC had a positive effect on LP. Our results also show that ecological factors account for a larger fraction of LP variability in Argentinean than in US rangelands. Differences in the relative importance of ecological versus nonecological drivers of LP in Argentina and the United States suggest that the valuation of ecosystem services between these two rangelands might be different. Current management strategies in Argentina are likely designed to maximize LP for various reasons we are unable to explore in this effort, whereas land managers in the United States may be optimizing multiple ecosystem services, including conservation or recreation, alongside LP.
Created2014-09-02
130423-Thumbnail Image.png
Description
The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ∼1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2]) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N[subscript 2] ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2] with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.
ContributorsYang, Jialing (Author) / Eller, Brianna S. (Author) / Nemanich, Robert (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-09-28
130421-Thumbnail Image.png
Description
Tree and shrub abundance has increased in many grasslands causing changes in ecosystem carbon and nitrogen pools that are related to patterns of woody plant distribution. However, with regard to spatial patterns of shrub proliferation, little is known about how they are influenced by grazing or the extent to which

Tree and shrub abundance has increased in many grasslands causing changes in ecosystem carbon and nitrogen pools that are related to patterns of woody plant distribution. However, with regard to spatial patterns of shrub proliferation, little is known about how they are influenced by grazing or the extent to which they are influenced by intraspecific interactions. We addressed these questions by quantifying changes in the spatial distribution of Prosopis velutina (mesquite) shrubs over 74 years on grazed and protected grasslands. Livestock are effective agents of mesquite dispersal and mesquite plants have lateral roots extending well beyond the canopy. We therefore hypothesized that mesquite distributions would be random on grazed areas mainly due to cattle dispersion and clustered on protected areas due to decreased dispersal and interspecific interference with grasses; and that clustered or random distributions at early stages of encroachment would give way to regular distributions as stands matured and density-dependent interactions intensified. Assessments in 1932, 1948, and 2006 supported the first hypothesis, but we found no support for the second. In fact, clustering intensified with time on the protected area and the pattern remained random on the grazed site. Although shrub density increased on both areas between 1932 and 2006, we saw no progression toward a regular distribution indicative of density-dependent interactions. We propose that processes related to seed dispersal, grass–shrub seedling interactions, and hydrological constraints on shrub size interact to determine vegetation structure in grassland-to-shrubland state changes with implications for ecosystem function and management.
Created2014-09-01
130414-Thumbnail Image.png
Description
Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used

Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used to hindcast paleodistributions of species and ecological communities (paleo-SDM) for time periods and locations of prehistoric human occupation. Paleo-SDM may be a powerful tool for understanding human prehistory if used to hindcast the distributions of plants, animals and ecological communities that were key resources for prehistoric humans and to use this information to reconstruct the resource landscapes (paleoscapes) of prehistoric people. Components of the resource paleoscape include species (game animals, food plants), habitats, and geologic features and landforms associated with stone materials for tools, pigments, and so forth. We first review recent advances in SDM as it has been used to hindcast paleodistributions of plants and animals in the field of paleobiology. We then compare the paleo-SDM approach to paleoenvironmental reconstructions modeled from zooarchaeological and archaeobotanical records, widely used in archaeology and paleoanthropology. Next, we describe the less well developed but promising approach of using paleo-SDM methods to reconstruct resource paleoscapes. We argue that paleo-SDM offers an explicitly deductive strategy that generates spatial predictions grounded in strong theoretical understandings of the relation between species, habitat distributions and environment. Because of their limited sampling of space and time, archaeobiological records may be better suited for paleo-SDM validation than directly for paleoenvironmental reconstruction. We conclude by discussing the data requirements, limitations and potential for using predictive modeling to reconstruct resource paleoscapes. There is a need for improved paleoclimate models, improved paleoclimate proxy and species paleodistribution data for model validation, attention to scale issues, and rigorous modeling methods including mechanistic models.
Created2014-12-17