Matching Items (12,143)
Filtering by

Clear all filters

ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
152103-Thumbnail Image.png
Description
Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive

Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive decline, and other symptoms that reduce quality of life. To ameliorate these negative consequences, estrogen-containing hormone therapy is prescribed. Findings from clinical and pre-clinical research studies suggest that menopausal hormone therapies can benefit memory and associated neural substrates. However, findings are variable, with some studies reporting null or even detrimental cognitive and neurobiological effects of these therapies. Thus, at present, treatment options for optimal cognitive and brain health outcomes in menopausal women are limited. As such, elucidating factors that influence the cognitive and neurobiological effects of menopausal hormone therapy represents an important need relevant to every aging woman. To this end, work in this dissertation has supported the hypothesis that multiple factors, including post-treatment circulating estrogen levels, experimental handling, type of estrogen treatment, and estrogen receptor activity, can impact the realization of cognitive benefits with Premarin hormone therapy. We found that the dose-dependent working memory benefits of subcutaneous Premarin administration were potentially regulated by the ratios of circulating estrogens present following treatment (Chapter 2). When we administered Premarin orally, it impaired memory (Chapter 3). Follow-up studies revealed that this impairment was likely due to the handling associated with treatment administration and the task difficulty of the memory measurement used (Chapters 3 and 4). Further, we demonstrated that the unique cognitive impacts of estrogens that become increased in circulation following Premarin treatments, such as estrone (Chapter 5), and their interactions with the estrogen receptors (Chapter 6), may influence the realization of hormone therapy-induced cognitive benefits. Future directions include assessing the mnemonic effects of: 1) individual biologically relevant estrogens and 2) clinically-used bioidentical hormone therapy combinations of estrogens. Taken together, information gathered from these studies can inform the development of novel hormone therapies in which these parameters are optimized.
ContributorsEngler-Chiurazzi, Elizabeth (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Hoffman, Steven (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsZelenak, Kristen (Performer) / Detweiler, Samuel (Performer) / Rollefson, Justin (Performer) / Hong, Dylan (Performer) / Salazar, Nathan (Performer) / Feher, Patrick (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsRyall, Blake (Performer) / Olarte, Aida (Performer) / Senseman, Stephen (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
151330-Thumbnail Image.png
Description
After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The current study directly tested this hypothesis, examining the cognitive effects of androstenedione administration in a rodent model. Middle-aged ovariectomized rats received vehicle or one of two doses of androstenedione (4 or 8 mg/kg daily). Rats were tested on a spatial working and reference memory maze battery including the water radial arm maze, Morris maze, and delay-match-to-sample task. Results showed that androstenedione at the highest dose impaired reference memory and working memory, including ability to maintain performance as memory demand was elevated. The latter was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. Glutamic acid decarboxylase (GAD) levels were measured in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system mediates androstenedione's cognitive impairments. Results showed that higher entorhinal cortex GAD levels were correlated with poorer Morris maze performance, regardless of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle deplete ovary, is detrimental to spatial learning, reference memory, and working memory, and that spatial reference memory performance might be related to the GABAergic system.
ContributorsCamp, Bryan Walter (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Arizona State University (Publisher)
Created2012
151375-Thumbnail Image.png
Description
Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal

Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal women, such as FemhrtTM (Simon et al., 2003). Thus, EE is prescribed clinically to women at ages ranging from puberty through reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young, female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection. For these studies, the low and medium doses correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to the range of doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. For each study, cognition was evaluated with a battery of maze tasks tapping several domains of spatial learning and memory. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; this was seen for both cyclic and tonic regimens. Cyclic and tonic delivery of low EE, a dose that corresponds to doses used in the clinic today, resulted in transient and null impairments, respectively, on cognition.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Baxter, Leslie C. (Committee member) / Olive, Michael F. (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsUhrenbacher, Tina (Performer) / Creviston, Hannah (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31