Matching Items (12,162)
Filtering by

Clear all filters

154069-Thumbnail Image.png
Description
Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been

Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been determined otherwise (Appendix A). In this thesis I describe new sample delivery developments that are paramount to advancing this field beyond what has been accomplished to date. Soft Lithography was used to implement sample conservation in the Gas Dynamic Virtual Nozzle (GDVN). A PDMS/glass composite microfluidic injector was created and given the capability of millisecond fluidic switching of a GDVN liquid jet within the divergent section of a 2D Laval-like GDVN nozzle, providing a means of collecting sample between the pulses of current XFELs. An oil/water droplet immersion jet was prototyped that suspends small sample droplets within an oil jet such that the sample droplet frequency may match the XFEL pulse repetition rate. A similar device was designed to use gas bubbles for synchronized “on/off” jet behavior and for active micromixing. 3D printing based on 2-Photon Polymerization (2PP) was used to directly fabricate reproducible GDVN injectors at high resolution, introducing the possibility of systematic nozzle research and highly complex GDVN injectors. Viscous sample delivery using the “LCP injector” was improved with a method for dealing with poorly extruding sample mediums when using full beam transmission from the Linac Coherent Light Source (LCLS), and a new viscous crystal-carrying medium was characterized for use in both vacuum and atmospheric environments: high molecular weight Polyethylene Glycol.
ContributorsNelson, Garrett Charles (Author) / Spence, John C (Thesis advisor) / Weierstall, Uwe J (Thesis advisor) / Schmidt, Kevin E (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsASU Library. Music Library (Publisher)
Created2018-03-21
154006-Thumbnail Image.png
Description
Molecular docking serves as an important tool in modeling protein-ligand interactions. Most of the docking approaches treat the protein receptor as rigid and move the ligand in the binding pocket through an energy minimization, which is an incorrect approach as proteins are flexible and undergo conformational changes upon ligand binding.

Molecular docking serves as an important tool in modeling protein-ligand interactions. Most of the docking approaches treat the protein receptor as rigid and move the ligand in the binding pocket through an energy minimization, which is an incorrect approach as proteins are flexible and undergo conformational changes upon ligand binding. However, modeling receptor backbone flexibility in docking is challenging and computationally expensive due to the large conformational space that needs to be sampled.

A novel flexible docking approach called BP-Dock (Backbone Perturbation docking) was developed to overcome this challenge. BP-Dock integrates both backbone and side chain conformational changes of a protein through a multi-scale approach. In BP-Dock, the residues along a protein chain are perturbed mimicking the binding induced event, with a small Brownian kick, one at a time. The fluctuation response profile of the chain upon these perturbations is computed by Perturbation Response Scanning (PRS) to generate multiple receptor conformations for ensemble docking. To evaluate the performance of BP-Dock, this approach was applied to a large and diverse dataset of unbound structures as receptors. Furthermore, the protein-peptide docking of PICK1-PDZ proteins was investigated. This study elucidates the determinants of PICK1-PDZ binding that plays crucial roles in numerous neurodegenerative disorders. BP-Dock approach was also extended to the challenging problem of protein-glycan docking and applied to analyze the energetics of glycan recognition in Cyanovirin-N (CVN), a cyanobacterial lectin that inhibits HIV by binding to its highly glycosylated envelope protein gp120. This study provide the energetic contribution of the individual residues lining the binding pocket of CVN and explore the effect of structural flexibility in the hinge region of CVN on glycan binding, which are also verified experimentally. Overall, these successful applications of BP-Dock highlight the importance of modeling backbone flexibility in docking that can have important implications in defining the binding properties of protein-ligand interactions.

Finally, an induced fit docking approach called Adaptive BP-Dock is presented that allows both protein and ligand conformational sampling during the docking. Adaptive BP-Dock can provide a faster and efficient docking approach for the virtual screening of novel targets for rational drug design and aid our understanding of protein-ligand interactions.
ContributorsBolia, Ashini (Author) / Ozkan, Sefika Banu (Thesis advisor) / Ghirlanda, Giovanna (Thesis advisor) / Beckstein, Oliver (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsLee, Eunhwa (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-17
156046-Thumbnail Image.png
Description
In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell.

In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible.

Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.
ContributorsSeyler, Sean L (Author) / Beckstein, Oliver (Thesis advisor) / Chamberlin, Ralph (Committee member) / Matyushov, Dmitry (Committee member) / Thorpe, Michael F (Committee member) / Vaiana, Sara (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsSuk, Mykola (Performer) / ASU Library. Music Library (Contributor)
Created2018-03-12
ContributorsEvans, Emily (Performer) / Sherrill, Amanda (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
ContributorsKotronakis, Dimitris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
156592-Thumbnail Image.png
Description
In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties

In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties behave over the BEC-BCS crossover. The vortex excitation energy, density profiles, and vortex core properties related to the current are calculated. A density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit is found. Size-effect dependencies in the disk geometry were carefully studied. In the second part of this dissertation I turn my attention to a very interesting problem in nuclear physics. In most simulations of nonrelativistic nuclear systems, the wave functions are found by solving the many-body Schrödinger equations, and they describe the quantum-mechanical amplitudes of the nucleonic degrees of freedom. In those simulations the pionic contributions are encoded in nuclear potentials and electroweak currents, and they determine the low-momentum behavior. By contrast, in this work I present a novel quantum Monte Carlo formalism in which both relativistic pions and nonrelativistic nucleons are explicitly included in the quantum-mechanical states of the system. I report the renormalization of the nucleon mass as a function of the momentum cutoff, an Euclidean time density correlation function that deals with the short-time nucleon diffusion, and the pion cloud density and momentum distributions. In the two nucleon sector the interaction of two static nucleons at large distances reduces to the one-pion exchange potential, and I fit the low-energy constants of the contact interactions to reproduce the binding energy of the deuteron and two neutrons in finite volumes. I conclude by showing that the method can be readily applied to light-nuclei.
ContributorsMadeira, Lucas (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Beckstein, Oliver (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsVazquez, Emilio (Performer) / Collins, Clarice (Performer) / Hunt, Emily (Performer) / Solari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-02-27