Matching Items (24,721)
Filtering by

Clear all filters

Description
The advancement of technology has transformed information consumption into an accessible and flexible process. The open learning ecosystem that exists online relies on self-direction. Learners are able to effectively fulfill personal learning goals with preferred content forms, specifically by utilizing Massive Open Online Courses (MOOC). It is essential to investigate

The advancement of technology has transformed information consumption into an accessible and flexible process. The open learning ecosystem that exists online relies on self-direction. Learners are able to effectively fulfill personal learning goals with preferred content forms, specifically by utilizing Massive Open Online Courses (MOOC). It is essential to investigate the role of mediums in distributed learning to initiate human-centric design changes that best support the learner. This study provides insight into how choice influences self-learning and highlights the major engagement difficulties of MOOCs. Significant attrition was experienced while issuing text and audio material to participants for three weeks. Although this prevented valid statistical tests from being run, it was clear that text was the most desirable and effective medium. Students that read exhibited the highest comprehension levels and selected it as their de-facto consumption method even if audio was made available. Since this study involved complex topics, this supported the transient information effect. Future studies should focus deeply on the structure of online courses by implementing personable engagement features that improve overall participation rate.
ContributorsWoods, Quintin (Author) / Roscoe, Rod (Thesis advisor) / Craig, Scotty (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2019
171751-Thumbnail Image.png
Description
Primary producers, from algae to trees, play a pivotal role in community structure and ecosystem function. Primary producers vary broadly in their functional traits (i.e., morphological, physiological, biochemical, and behavioral characteristics), which determine how they respond to stimuli and affect ecosystem properties. Functional traits provide a mechanistic link between

Primary producers, from algae to trees, play a pivotal role in community structure and ecosystem function. Primary producers vary broadly in their functional traits (i.e., morphological, physiological, biochemical, and behavioral characteristics), which determine how they respond to stimuli and affect ecosystem properties. Functional traits provide a mechanistic link between environmental conditions, community structure, and ecosystem function. With climate change altering environmental conditions, understanding this mechanistic link is essential for predicting future community structure and ecosystem function. Competitive interactions and trait values in primary producers are often context dependent, whereby changes in environmental conditions and resources alter relationships between species and ecosystem processes. Well-established paradigms concerning how species in a community respond to each other and to environmental conditions may need to be re-evaluated in light of these environmental changes, particularly in highly variable systems. In this dissertation, I examine the role of primary producer functional traits on community structure and ecosystem function. Specifically, I test a conceptual framework that incorporates response traits, effect traits, and their interaction, in affecting primary producer communities and ecosystem function across different aquatic systems. First, I identified species-specific responses to intensifying hydrologic stressors important in controlling wetland plant community composition over time in an aridland stream. Second, I found that effect traits of submerged and emergent vegetation explained differences in ecosystem metabolism and carbon dynamics among permafrost mire thaw ponds. Next, I examined response-effect trait interactions by comparing two dominant wetland plant species over a water-stress gradient, finding that responses to changes in hydrology (i.e., altered tissue chemistry) in turn affect ecosystem processes (i.e., subsurface CO2 concentration). Finally, I demonstrate how indirect effects of diatom functional traits on water chemistry and ecosystem metabolism help explain disconnects between resource availability and productivity in the Colorado River. By expanding my understanding of how metabolic processes and carbon cycling in aquatic ecosystems vary across gradients in hydrology, vegetation, and organic matter, I contributed to my understanding of how communities influence ecosystem processes. A response-effect trait approach to understanding communities and ecosystems undergoing change may aid in predicting and mitigating the repercussions of future climate change.
ContributorsLauck, Marina Diane (Author) / Grimm, Nancy B (Thesis advisor) / Appling, Alison P (Committee member) / Childers, Dan E (Committee member) / Sabo, John L (Committee member) / Arizona State University (Publisher)
Created2022
155808-Thumbnail Image.png
Description
Science can help inform policy decisions by providing information on the risks and benefits of a technology. In the field of nanotechnology, which is characterized by high degree of complexity and uncertainty, there are high demands for scientists to take an active role in policy debates with regulators, policy-makers

Science can help inform policy decisions by providing information on the risks and benefits of a technology. In the field of nanotechnology, which is characterized by high degree of complexity and uncertainty, there are high demands for scientists to take an active role in policy debates with regulators, policy-makers and the public. In particular, policy-makers often rely on scientific experts to help them make decisions about regulations. However, scientists’ perceptions about policy and public engagement vary based on their individual characteristics, values, and backgrounds. Although many policy actors are involved in nanotechnology policy process, there are few empirical studies that focus on the establishment of coalitions and their impact on policy outputs, as well as the role of scientists in the coalitions. Also, while the Environmental Protection Agency (EPA) has regulatory authority over nanoscale materials, there is a lack of literature that describes the use of science on EPA’s decision making of nanotechnology.

In this dissertation, these research gaps are addressed in three essays that explore the following research questions: (1) how are nano-scientists’ individual characteristics and values associated with their perceptions of public engagement and political involvement? (2) how can the Advocacy Coalition Framework (ACF) can be applied to nanotechnology policy subsystem? and (3) how does the EPA utilize science when making regulatory decisions about nanotechnology? First, using quantitative data from a 2011 mail survey of elite U.S. nanoscientists, the dissertation shows that scientists are supportive of engaging with policy-makers and the public about their results. However, there are differences among scientists based on their individual characteristics. Second, qualitative interview analysis suggests that there are two opposing advocacy groups with shared beliefs in the nanotechnology policy subsystem. The lineup of coalition members is stable over time, while the EPA advocates less consistent positions. The interview data also show a significant role of scientific information in the subsystem. Third, the dissertation explains the EPA’s internal perspective about the use of science in regulatory decision making for nanotechnology. The dissertation concludes with some lessons that are applicable for policy-making for emerging technologies.
ContributorsKim, Youngjae (Author) / Corley, Elizabeth A (Thesis advisor) / Darnall, Nicole (Committee member) / Guston, David (Committee member) / Arizona State University (Publisher)
Created2017
158503-Thumbnail Image.png
Description
This study aimed to advance understanding of the relation between social media and adolescent alcohol use while accounting for offline peer alcohol use, exploring offline peer alcohol use separately as a covariate and as a moderator, with an additional exploratory analysis of the relation between social media and alcohol use

This study aimed to advance understanding of the relation between social media and adolescent alcohol use while accounting for offline peer alcohol use, exploring offline peer alcohol use separately as a covariate and as a moderator, with an additional exploratory analysis of the relation between social media and alcohol use without offline peer alcohol use in the model. A total of 868 students (55% female) in grade 7 (n = 468) and grade 8 (n = 400) at wave 1, self-reported on alcohol use, binge drinking, and social media use as well as nominated friends from their school and grade. Data from nominated peers who also completed the questionnaires were used for peer-report of alcohol use. Data were collected annually from students at grades 8, 9, 10, and 11 were used in analyses. Final structural models consisted of a cross-lagged panel design with saved factor scores for social media and peer alcohol use predicting a categorical alcohol use variable or a binary binge drinking variable. With offline peer alcohol use as a covariate in the model, social media did not prospectively relate to subsequent grade alcohol use or binge drinking. However, without offline peer alcohol use, the path from social media use to subsequent grade alcohol use was significant but not the path to binge drinking. Offline peer alcohol use did not significantly moderate the relation between social media and subsequent grade alcohol use or binge drinking.
ContributorsCurlee, Alexandria Stephanie (Author) / Corbin, William R. (Thesis advisor) / Chassin, Laurie (Committee member) / Doane, Leah D (Committee member) / Grimm, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2020
161439-Thumbnail Image.png
Description
Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced

Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced activator of interferon (DAI), which activates RIPK3, leading to death of the cell and thereby inhibiting further viral replication in host cells. DAI also localizes into stress granules, accumulations of mRNAs that have stalled in translation due to cellular stress. The toxin arsenite, a canonical inducer of stress granule formation, was used in this project to study necroptosis. By initiating necroptosis with arsenite and vaccinia virus, this research project investigated the roles of necroptosis proteins and their potential localization into stress granules. The two aims of this research project were to determine whether stress granules are important for arsenite- and virus-induced necroptosis, and whether the proteins DAI and RIPK3 localize into stress granules. The first aim was investigated by establishing a DAI and RIPK3 expression system in U2OS cells; arsenite treatment or vaccinia virus infection was then performed on the U2OS cells as well as on U2OSΔΔG3BP1/2 cells, which are not able to form stress granules. The second aim was carried out by designing fluorescent tagging for the necroptosis proteins in order to visualize protein localization with fluorescent microscopy. The results show that arsenite induces DAI-dependent necroptosis in U2OS cells and that this arsenite-induced necroptosis likely requires stress granules. In addition, the results show that vaccinia virus induces DAI-dependent necroptosis that also likely requires stress granules in U2OS cells. Furthermore, a fluorescent RIPK3 construct was created that will allowfor future studies on protein localization during necroptosis and can be used to answer questions regarding localization of necroptosis proteins into stress granules. This project therefore contributes to a greater understanding of the roles of DAI and RIPK3 in necroptosis, as well as the roles of stress granules in necroptosis, both of which are important in research regarding viral infection and cellular stress.
ContributorsGogerty, Carolina (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Jentarra, Garilyn (Committee member) / Arizona State University (Publisher)
Created2021
157510-Thumbnail Image.png
Description
This study explores how a teen center within a local police department in California impacts the lives of local Latinx youth. Through a mixed methods approach of surveys, focus groups, and interviews, the study explores Mexican American youth, the most populous Latinx youth in the United States who are uniquely

This study explores how a teen center within a local police department in California impacts the lives of local Latinx youth. Through a mixed methods approach of surveys, focus groups, and interviews, the study explores Mexican American youth, the most populous Latinx youth in the United States who are uniquely challenged by varying immigration statuses, mental health, and academic barriers. Theoretically, the study draws out intersections unique to the Latinx youth experiences growing up in America and engages in inter-disciplinary debates about inequities in health and education and policing practices. These intersections and debates are addressed through in-depth qualitative analysis of three participant groups: current youth participants of the teen center’s Youth Leadership Council (YLC), alumni of the YLC, and adult decision makers of the program. Pre- and post-surveys and focus groups are conducted with the youth participants over the span of a full year, while they take part in the teen center program, capturing how the teen center directly impacts their academic achievements, feelings of belonging, mental health, and attitudes towards law enforcement, over time. Interviews with alumni and key decision makers of the teen center further reveal broader patters in how the YLC program positively impacts the lives of Latinx youth and the challenges it faces when federal immigration enforcement complicates local policy relations with local communities.
ContributorsGutierrez, Courtney Amanda (Author) / Colbern, Allan (Thesis advisor) / Cuadraz, Gloria (Committee member) / Lopez, Kristina (Committee member) / Arizona State University (Publisher)
Created2019
Description
Throughout western clarinet art music, there are not only a large number of great performers and classical works, but also a valuable body of literature that has laid a solid foundation for clarinet development and global dispersion. By contrast, Chinese clarinet literature is lacking in quantity and global distribution. However, this

Throughout western clarinet art music, there are not only a large number of great performers and classical works, but also a valuable body of literature that has laid a solid foundation for clarinet development and global dispersion. By contrast, Chinese clarinet literature is lacking in quantity and global distribution. However, this is the first comprehensive study that discloses the mysterious mask of China’s clarinet art.

This study does not merely discuss the Chinese clarinet history, but it also introduces important historical events that influenced the development of the Chinese clarinet industry (excluding manufacturing), including Chinese military bands, clarinet music, pedagogy, clarinet figures, and its future direction.

In the conclusion of this paper, the author discusses the deficiency of the Chinese clarinet industry and makes suggestions for solving problems with clarinet players practicing more technique rather than focusing on musicianship, educators’ lack of concentration on teaching and academic research, and the shortage of Chinese clarinet works. Additionally, the author appeals to Chinese clarinet players to actively participate in international activities and the Chinese government to increase incentives to introduce high-level Chinese talents overseas to help make China a better country in any field.
ContributorsZhu, Shuang (Author) / Spring, Robert S (Thesis advisor) / Gardner, Joshua T (Thesis advisor) / Wells, Christopher (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2017
156019-Thumbnail Image.png
Description
Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a

Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a reasonably good fit to experimental mobility data. But as the semiconductor world moves towards 10nm technology, many of the basic assumptions in this method, namely the very fundamental Fermi’s golden rule come into question. The derivation of the Fermi’s golden rule assumes that the scattering is infrequent (therefore the long time limit) and the collision duration time is zero. This thesis overcomes some of the limitations of the above approach by successfully developing a quantum mechanical simulator that can model the low-field inversion layer mobility in silicon MOS capacitors and other inversion layers as well. It solves for the scattering induced collisional broadening of the states by accounting for the various scattering mechanisms present in silicon through the non-equilibrium based near-equilibrium Green’s Functions approach, which shall be referred to as near-equilibrium Green’s Function (nEGF) in this work. It adopts a two-loop approach, where the outer loop solves for the self-consistency between the potential and the subband sheet charge density by solving the Poisson and the Schrödinger equations self-consistently. The inner loop solves for the nEGF (renormalization of the spectrum and the broadening of the states), self-consistently using the self-consistent Born approximation, which is then used to compute the mobility using the Green-Kubo Formalism.
ContributorsJayaram Thulasingam, Gokula Kannan (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2017
187355-Thumbnail Image.png
Description
Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating

Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating relationships measured at aggregated scales to the individual level can result in ecological fallacy. Prior work has also primarily studied the most severe health outcomes: hospitalization/emergency care and mortality. It is likely that magnitudes more people are experiencing negative health impacts from heat that do not necessarily result in medical care. Such less severe impacts are under-researched in the literature.This dissertation addresses these knowledge gaps by identifying how social characteristics and physical measurements of heat at the individual and household level act independently and in concert to influence human heat-related outcomes, especially less severe outcomes. In the first paper, meta-analysis was used to quantify the summary effects of vulnerability indicators on incidence of heat-related illness. More proximal vulnerability indicators (e.g., residential air conditioning use, indoor heat exposure, etc.) tended to have the strongest impact on odds of experiencing heat-related illness than more distal indicators. In the next paper, indoor air temperature observations were related to the social characteristics of the residents. The strongest predictor of indoor air temperature was the residents’ ideal thermally comfortable temperature, despite affordability. In the final paper, fine scale biometeorological observations of the outdoor thermal environment near residents’ homes were linked to their experience with heat-related illness. The outdoor thermal environment appeared to have a stronger, more consistent impact on heat-related illness among households in a lower income neighborhood compared to a higher income one. These findings affirm the value of employing residential heat mitigation solutions at the individual and household scale, indoors and outdoors. Across all chapters, the indoor thermal environment, and the ability to modify it, had a clear impact on residents’ comfort and health. Solutions that target the most proximal causal factors of heat-related illness will likely have the greatest impact on reducing the burden of heat on human health and well-being.
ContributorsWright, Mary K (Author) / Hondula, David M (Thesis advisor) / Larson, Kelli L (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2023
158427-Thumbnail Image.png
Description
ABSTRACT



"The Soul Unto Itself," a chamber music song cycle, was commissioned by the author, Rosa LoGiudice, and composed by William Clay, a doctoral candidate in composition at Arizona State University. The cycle was conceived and composed in the summer and fall

ABSTRACT



"The Soul Unto Itself," a chamber music song cycle, was commissioned by the author, Rosa LoGiudice, and composed by William Clay, a doctoral candidate in composition at Arizona State University. The cycle was conceived and composed in the summer and fall of 2019. The chamber ensemble was a sextet comprised of Megan Law, mezzo-soprano, Kristi Hanno, clarinet, Emilio Vazquez, violin, Rittika Gambhir, bassoon, Nathaniel De la Cruz, double bass, and Rosa LoGiudice, piano, all based in Tempe, Arizona. The song cycle was premiered in a lecture recital on December 8, 2019 at Hammer and Strings Conservatory in Gilbert, AZ.

"The Soul Unto Itself" is a cycle of six songs based on poems of Emily Dickinson. The poems all have common themes of personal transformation achieved through the introspective observations of the poet. An unusual chamber ensemble was chosen to include instruments not commonly used in vocal chamber music in order to create a greater variety of musical colors and timbres. This project included the creation of the musical score, a live performance that was video recorded, and the research paper. This document discusses the process of working with the composer, rehearsing the music as it was being composed, and negotiating revisions necessary to make the music more effective in performance. Each song is discussed in detail, especially the connection between the music and poetry, the overall form of the song, revisions discussed and implemented, and important motivic relationships between the songs that unify the cycle. In summary, the process of collaborating with a composer is a rewarding experience for both the performers and the composer, as everyone is challenged to improve their craft and overcome obstacles to achieve a successful performance.
ContributorsLoGiudice, Rosa Mia (Author) / Campbell, Andrew (Thesis advisor) / Ryan, Russell (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2020