Matching Items (15,000)
Filtering by

Clear all filters

Description

The Malthusian League, founded in London, England, in 1877 promoted the use of contraception to limit family size. Activists Charles Bradlaugh and Annie Besant established the Malthusian League after they were arrested and exonerated for publishing a pamphlet describing techniques to prevent pregnancy. Founders based the league on the principles

The Malthusian League, founded in London, England, in 1877 promoted the use of contraception to limit family size. Activists Charles Bradlaugh and Annie Besant established the Malthusian League after they were arrested and exonerated for publishing a pamphlet describing techniques to prevent pregnancy. Founders based the league on the principles of Thomas Malthus, a British nineteenth century economist, who wrote on the perils of a population growing beyond the resources available to support it. The Malthusian League advocated for limiting family size voluntarily through contraception to avoid the overpopulation and poverty cautioned in Malthus’ work. After fifty years, the Malthusian League closed due to the increasing disapproval for Malthus’s economic theories of population and poverty. However, the Malthusian League’s activism during the late nineteenth and early twentieth centuries led to more tolerant views of contraception and family planning in Great Britain in the twentieth century.

Created2017-04-27
173007-Thumbnail Image.png
Description

The March of Dimes Foundation, or the March of Dimes, is a non-profit organization headquartered in Arlington, Virginia, focused on the health of pregnant women and infants in the US. Former United States president Franklin Delano Roosevelt founded the March of Dimes, then called the National Foundation for Infantile Paralysis,

The March of Dimes Foundation, or the March of Dimes, is a non-profit organization headquartered in Arlington, Virginia, focused on the health of pregnant women and infants in the US. Former United States president Franklin Delano Roosevelt founded the March of Dimes, then called the National Foundation for Infantile Paralysis, in 1938 to address polio. Polio is a viral illness that infects the spinal cord and may lead to paralysis. Roosevelt contracted polio in 1921, which left him permanently paralyzed from the waist down. During the 1960s, after scientists introduced polio vaccines, March of Dimes shifted its focus to prevent preterm birth and birth defects. As a non-profit organization, March of Dimes provides community service, funds for research, and efforts to educate the public about preterm birth and birth defects. While March of Dimes’ original goal was to help reduce the spread of polio in the US, it was also one of the first organizations to lead a campaign to prevent birth defects and infant mortality.

Created2021-05-17
173810-Thumbnail Image.png
Description

The Marine Biological Laboratory (MBL) was founded in 1888 in Woods Hole, Massachusetts. Woods Hole was already the site for the government 's US Fish Commission Laboratory directed by Spencer Fullerton Baird, and it seemed like the obvious place to add an independent research laboratory that would draw individual scientific

The Marine Biological Laboratory (MBL) was founded in 1888 in Woods Hole, Massachusetts. Woods Hole was already the site for the government 's US Fish Commission Laboratory directed by Spencer Fullerton Baird, and it seemed like the obvious place to add an independent research laboratory that would draw individual scientific investigators along with students and instructors for courses. From the beginning, the lab had the dual mission of teaching and research, and from the beginning leading biologists have found their way to this small village on the "heel" tip of Cape Cod.

Created2008-10-24
173851-Thumbnail Image.png
Description

The Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, began in 1888 to offer opportunities for instruction and research in biological topics. For the first few years, this meant that individual investigators had a small lab space upstairs in the one wooden building on campus where students heard

The Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, began in 1888 to offer opportunities for instruction and research in biological topics. For the first few years, this meant that individual investigators had a small lab space upstairs in the one wooden building on campus where students heard their lectures and did their research in a common area downstairs. The lectures for those first years offered an overview of general biology with a focus on zoology, and they were intended for teachers and graduate students interested in acquiring the background for teaching about and/or actually doing laboratory work. As the lab quickly grew, it added sets of lectures that made up courses in zoology, then botany, then physiology, and in 1893 what became the first Embryology Course.

Created2007-10-24
173688-Thumbnail Image.png
Description

In 1888 when students and investigators arrived in Woods Hole for the inaugural session of the Marine Biological Laboratory (MBL), they recognized the need for a library collection of books and journals. The one wooden building on campus, later known as Old Main, housed everything, with researchers upstairs and

In 1888 when students and investigators arrived in Woods Hole for the inaugural session of the Marine Biological Laboratory (MBL), they recognized the need for a library collection of books and journals. The one wooden building on campus, later known as Old Main, housed everything, with researchers upstairs and the student laboratory downstairs. Lectures were held in one corner, and shelves held what books and journals were contributed. As the first MBL Director Charles Otis Whitman noted in his 1888 Annual Report, having a library was absolutely essential for the success of the lab and would have to be provided somehow. The initial core volumes should include reference works and textbooks, and also the important journals in the four languages thought to be essential at the time.

Created2008-10-25
172750-Thumbnail Image.png
Description

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism. The Notch signaling pathway is active in multiple aspects of somitogenesis, and it continues to be a critical regulator during myogenesis. Throughout the life of an organism, Notch signaling prevents the differentiation of muscle progenitor cells into muscle cells. Such preventions help maintain populations of progenitor cells that can remain dormant until the growth or repair of muscle is necessary, at which point the Notch signal to the muscle progenitor cells is disrupted, and the muscle progenitor cells differentiate into muscle fibers and cells. Without Notch signaling, myogenesis proceeds prematurely and dissipates before mature muscle can form.

Created2013-07-26
172757-Thumbnail Image.png
Description

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development,

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands. The physical interaction of receptors and ligands directs the genetic response of the first cell to produce proteins that define the type of cell it will become. One of the earliest discovered roles of the Notch signaling pathway in vertebrates is in somite formation (somitogenesis). Somitogenesis is the formation of somites, which are sphere-like structures in early vertebrate embryos that are the first visible signs of segmentation. Somites then help to define many tissues and features of the adult animal's body. The Notch signaling pathway plays at least two distinct roles during somitogenesis: the first is maintenance of an oscillating protein gradient, called the segmental clock, and the second is establishing the polarity of somites. Mutations to genes in the Notch pathway can result in birth defects characterized by abnormal development of bones of the spine and ribs, like spondylocostal dysostosis. Additionally, dysfunction in the pathway linked to cancer progression, HIV-related complications, and Alzheimer´s disease, among other disorders.

Created2014-03-23
173793-Thumbnail Image.png
Description

The source-sink model, first proposed by biologist Francis Crick in 1970, is a theoretical system for how morphogens distribute themselves across small fields of early embryonic cells. A morphogen is a substance that determines the fate and phenotype of a group of cells through a concentration gradient of

The source-sink model, first proposed by biologist Francis Crick in 1970, is a theoretical system for how morphogens distribute themselves across small fields of early embryonic cells. A morphogen is a substance that determines the fate and phenotype of a group of cells through a concentration gradient of itself across that group. Crick’s theory has been experimentally confirmed with several morphogens, most notably with the protein bicoid , the first discovered morphogen. The model provides a theoretical structure for the understanding of some features of early embryonic development.

Created2012-05-07
Description

The Southern Gastric-Brooding Frog (Rheobatrachus silus) was an aquatic frog that lived in south-east Australia. In 2002, the International Union for Conservation of Nature Red List declared the frog extinct, although no wild specimens had been reported since 1981. As the common name alludes to, the R.
silus

The Southern Gastric-Brooding Frog (Rheobatrachus silus) was an aquatic frog that lived in south-east Australia. In 2002, the International Union for Conservation of Nature Red List declared the frog extinct, although no wild specimens had been reported since 1981. As the common name alludes to, the R.
silus was a gastric-brooder, meaning that the female's eggs developed inside of her stomach. Weeks after ingestion, juvenile frogs escape through the mother's mouth. Because no other observed species performs this reproductive behavior, in the early twenty-first century R. silus became a target of
the de-extinction movement that aims to resurrect extinct species. Researchers studied this frog's reproductive behavior and how the eggs and embryos escape digestion. Some scientists claimed that resurrecting this frog could result in future medical applications related to digestion and to reprogramming organ function, as during pregnancy, R. silus's stomach physiologically functioned as a uterus.

Created2015-01-26
ContributorsYam, Jessica (Performer) / ASU Library. Music Library (Publisher)
Created2012-03-26