Matching Items (447)
Filtering by

Clear all filters

168318-Thumbnail Image.png
Description
In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for

In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for in-situ process monitoring. Fluorine surface interactions were first studied in a comparison of thermal and plasma enhanced ALD (TALD and PEALD) of AlF3 thin films prepared using hydrogen fluoride (HF), trimethylaluminum (TMA), and H2-plasma. The ALD AlF3 films were compared ¬in-situ using ellipsometry and X-ray photoelectron spectroscopy (XPS). Ellipsometry showed a growth rate of 1.1 Å/ cycle and 0.7 Å/ cycle, at 100°C, for the TALD and PEALD AlF3 processes, respectively. XPS indicated the presence of Al-rich clusters within the PEALD film. The formation of the Al-rich clusters is thought to originate during the H2-plasma step of the PEALD process. The Al-rich clusters were not detected in the TALD AlF3 films. This study provided valuable insight on the role of fluorine in an ALD process. Reactive ion etching is a common dry chemical etch process for fabricating GaN devices. However, the use of ions can induce various defects, which can degrade device performance. The development of low-damage post etch processes are essential for mitigating plasma induced damage. As such, two multistep ALE methods were implemented for GaN based on oxidation, fluorination, and ligand exchange. First, GaN surfaces were oxidized using either water vapor or O2-plasma exposures to produce a thin oxide layer. The oxide layer was addressed using alternating exposures of HF and TMG, which etch Ga2O3 films. Each ALE process was characterized using in-situ using ellipsometry and XPS and ex-situ transmission electron microscopy (TEM). XPS indicated F and O impurities remained on the etched surfaces. Ellipsometry and TEM showed a slight reduction in thickness. The very low ALE rate was interpreted as the inability of the Ga2O3 ALE process to fluorinate the ordered surface oxide on GaN (0001). Overall, these results indicate HF is effective for the ALD of metal fluorides and the ALE of metal oxides.
ContributorsMessina, Daniel C (Author) / Nemanich, Robert J (Thesis advisor) / Goodnick, Stephen (Committee member) / Ponce, Fernando A (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2021
156673-Thumbnail Image.png
Description
A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo

A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo sensitivity testing, were received from Consortium X. With limited background information on these stacks, the central theme was to determine the origin(s) of failure via the use of thermal and physicochemical characterization techniques.

The optical and scanning electron microscopy revealed that contact electrode layers are discontinuous in all samples, while delaminations between electrodes and pad layer were observed in failed samples. The X-ray diffraction data on the pad PZT revealed an overall c/a ratio of 1.022 ratio and morphotropic boundary composition, with significant variations of the Zr to Ti ratio within a sample and between samples. Electron probe microanalysis confirmed that the overall Zr to Ti ratio of the pad PZT was 52/48, and higher amounts of excess PbO in failed samples, whereas, inductively coupled plasma mass spectrometry revealed the presence of Mn, Al, and Sb (dopants) and presence of Cu (sintering aid) in in this hard (pad) PZT. Additionally, three exothermic peaks during thermal analysis was indicative of incomplete calcination of pad PZT. Moreover, transmission electron microscopy and scanning transmission electron microscopy revealed the presence of parylene at the Ag-pad PZT interface and within the pores of pad PZT (in failed samples subjected to electric fields). This further dilutes the electrical, mechanical, and electromechanical properties of the pad PZT, which in turn detrimentally influences the pulse echo sensitivity.
ContributorsPeri, Prudhvi Ram (Author) / Dey, Sandwip (Thesis advisor) / Smith, David (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
157604-Thumbnail Image.png
Description
Computer assisted language learning (CALL) has become increasingly common as a means of helping learners develop essential skills in a second or foreign language. However, while many CALL programs claim to be based on principles of second language acquisition (SLA) theory and research, evaluation of design and learning outcomes at

Computer assisted language learning (CALL) has become increasingly common as a means of helping learners develop essential skills in a second or foreign language. However, while many CALL programs claim to be based on principles of second language acquisition (SLA) theory and research, evaluation of design and learning outcomes at the level of individual CALL exercises is lacking in the existing literature. The following proposed study will explore the design of computer-based vocabulary matching exercises using both written text and images and the effects of various design manipulations on learning outcomes. The study will use eye-tracking to investigate what users attend to on screen as they work through a series of exercises with different configurations of written words and images. It will ask whether manipulation of text and image features and combinations can have an effect on learners’ attention to the various elements, and if so, whether differences in levels of attention results in higher or lower scores for measures of learning. Specifically, eye-tracking data will be compared to post-test scores for recall and recognition of target vocabulary items to look for a correlation between levels of attention to written forms in-task and post-test gains in scores for vocabulary learning.
ContributorsPatchin, Colleen (Author) / Smith, David (Thesis advisor) / Ross, Andrew (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2019
154831-Thumbnail Image.png
Description
This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first

This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first part of this dissertation focuses on the optimization of synthesis parameters and the scale-up production of ZnO nanowires by vapor transport method. Uniform ZnO nanowires with 40 nm width can be produced by using 1100 °C reaction temperature and 20 sccm oxygen flow rate, which are the two most important parameters.

The use of ethanol as carbon source with or without water steam provides uniform carbonaceous deposition on ZnO nanowire templates. The amount of as-deposited carbonaceous material can be controlled by reaction temperature and reaction time. Due to the catalytic property of ZnO surface, the thicknesses of carbonaceous layers are typically in nanometers. Different methods to remove the ZnO templates are explored, of which hydrogen reduction at temperatures higher than 700 °C is most efficient. The ZnO templates can also be removed under ethanol environment, but the temperatures need to be higher than 850 °C for practical use.

Characterizations of hollow carbon nanofibers show that the hollow carbon nanostructures have a high specific surface area (>1100 m2/g) with the presence of mesopores (~3.5 nm). The initial data on energy storage as electrodes of electrochemical double layer capacitors show that high specific capacitance (> 220 F/g) can be obtained, which is related to the high surface area and unique porous hollow structure with a thin wall.
ContributorsSong, Yian (Author) / Liu, Jingyue (Committee member) / Smith, David (Committee member) / McCartney, Martha (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2016
153821-Thumbnail Image.png
Description
This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families

This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families of Ag islands have been observed. “Big islands” are clearly faceted and have basal dimensions in the few hundred nm to μm range with a variety of basal shapes. “Small islands” are not clearly faceted and have basal diameters in the 10s of nm range. Big islands form via a nucleation and growth mechanism, and small islands form via precipitation of Ag contained in a planar layer between the big islands that is thicker than the Stranski-Krastanov layer existing at room-temperature.

The pseudodielectric functions of epitaxial Ag islands on Si(100) substrates were investigated with spectroscopic ellipsometry. Comparing the experimental pseudodielectric functions obtained for Si with and without Ag islands clearly identifies a plasmon mode with its dipole moment perpendicular to the surface. This observation is confirmed using a simulation based on the thin island film (TIF) theory. Another mode parallel to the surface may be identified by comparing the experimental pseudodielectric functions with the simulated ones from TIF theory. Additional results suggest that the LSP energy of Ag islands can be tuned from the ultra-violet to the infrared range by an amorphous Si (α-Si) cap layer.

Heterostructures were grown that incorporated Ge QDs, an epitaxial Si cap layer and Ag islands grown atop the Si cap layer. Optimum growth conditions for distinct Ge dot ensembles and Si cap layers were obtained. The density of Ag islands grown on the Si cap layer depends on its thickness. Factors contributing to this effect may include the average strain and Ge concentration on the surface of the Si cap layer.

The effects of the Ag LSP on the PL of Ge coherent domes were investigated for both α-Si capped and bare Ag islands. For samples with low-doped substrates, the LSPs reduce the Ge dot-related PL when the Si cap layer is below some critical thickness and have no effect on the PL when the Si cap layer is above the critical thickness. For samples grown on highly-doped wafers, the LSP of bare Ag islands enhanced the PL of Ge QDs by ~ 40%.
ContributorsKong, Dexin (Author) / Drucker, Jeffery (Thesis advisor) / Chen, Tingyong (Committee member) / Ros, Robert (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
154257-Thumbnail Image.png
Description
Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can

Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can be achieved through characterizations on transmission electron microscopy (TEM). Emphasis should be put on materials structure changes during the reactions in their “working conditions”. Environmental TEM with in situ light illumination system allows the photocatalysts to be studied under light irradiation when exposed to H2O vapor. A set of ex situ and in situ TEM characterizations are carried out on typical types of TiO2 based photocatalysts. The observed structure changes during the reaction are correlated with the H2 production rate for structure-property relationships.

A surface disordering was observed in situ when well-defined anatase TiO2 rhombohedral nanoparticles were exposed to 1 Torr H2O vapor and 10suns light inside the environmental TEM. The disordering is believed to be related to high density of hydroxyl groups formed on surface oxygen vacancies during water splitting reactions.

Pt co-catalyst on TiO2 is able to split pure water producing H2 and O2. The H2 production rate drops during the reaction. Particle size growth during reaction was discovered with Z-contrast images. The particle size growth is believed to be a photo-electro-chemical Ostwald ripening.

Characterizations were also carried out on a more complicated photocatalyst system: Ni/NiO core/shell co-catalyst on TiO2. A decrease of the H2 production rate resulting from photo-corrosion was observed. The Ni is believed to be oxidized to Ni2+ by OH• radicals which are intermediate products of H2O oxidation. The mechanism that the OH• radicals leak into the cores through cracks on NiO shells is more supported by experiments.

Overall this research has done a comprehensive ex situ and in situ TEM characterizations following some typical TiO2 based photocatalysts during reactions. This research has shown the technique availability to study photocatalyst inside TEM in photocatalytic conditions. It also demonstrates the importance to follow structure changes of materials during reactions in understanding deactivation mechanisms.
ContributorsZhang, Liuxian (Author) / Crozier, Peter (Thesis advisor) / Smith, David (Committee member) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2015
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
153518-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by progressive autoimmune destruction of insulin-producing pancreatic β-cells. Genetic, immunological and environmental factors contribute to T1D development. The focus of this dissertation is to track the humoral immune response in T1D by profiling autoantibodies (AAbs) and anti-viral antibodies using an

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by progressive autoimmune destruction of insulin-producing pancreatic β-cells. Genetic, immunological and environmental factors contribute to T1D development. The focus of this dissertation is to track the humoral immune response in T1D by profiling autoantibodies (AAbs) and anti-viral antibodies using an innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA).

AAbs provide value in identifying individuals at risk, stratifying patients with different clinical courses, improving our understanding of autoimmune destructions, identifying antigens for cellular immune response and providing candidates for prevention trials in T1D. A two-stage serological AAb screening against 6,000 human proteins was performed. A dual specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) was validated with 36% sensitivity at 98% specificity by an orthogonal immunoassay. This is the first systematic screening for novel AAbs against large number of human proteins by protein arrays in T1D. A more comprehensive search for novel AAbs was performed using a knowledge-based approach by ELISA and a screening-based approach against 10,000 human proteins by NAPPA. Six AAbs were identified and validated with sensitivities ranged from 16% to 27% at 95% specificity. These two studies enriched the T1D “autoantigenome” and provided insights into T1D pathophysiology in an unprecedented breadth and width.

The rapid rise of T1D incidence suggests the potential involvement of environmental factors including viral infections. Sero-reactivity to 646 viral antigens was assessed in new-onset T1D patients. Antibody positive rate of EBV was significantly higher in cases than controls that suggested a potential role of EBV in T1D development. A high density-NAPPA platform was demonstrated with high reproducibility and sensitivity in profiling anti-viral antibodies.

This dissertation shows the power of a protein-array based immunoproteomics approach to characterize humoral immunoprofile against human and viral proteomes. The identification of novel T1D-specific AAbs and T1D-associated viruses will help to connect the nodes in T1D etiology and provide better understanding of T1D pathophysiology.
ContributorsBian, Xiaofang (Author) / LaBaer, Joshua (Thesis advisor) / Mandarino, Lawrence (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015
152850-Thumbnail Image.png
Description
This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other

This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor – liquid – solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11− 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire.

Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 .

The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene synthesis and process development for reproducible graphene growth. Graphene was grown on Cu, Au and AuCu alloys at varioua conditions. Preliminary results showed triangular features on the liquid part of the Cu metal surface. For Au, and AuCu alloys, hexagonal features were noticed both on the solid and liquid parts.
ContributorsRathi, Somilkumar J (Author) / Drucker, Jeffery (Thesis advisor) / Smith, David (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2014
153758-Thumbnail Image.png
Description
GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following two points:

First, the surface electronic state configuration was examined with regards to the polarization bound 1013 charges/cm2 that increases with aluminum content. This large bound charge requires compensation either externally by surface states or internally by the space charge regions as relates to band bending. In this work, band bending was measured after different surface treatments of GaN and AlGaN to determine the effects of specific surface states on the electronic state configuration. Results showed oxygen-terminated N-face GaN, Ga-face GaN, and Ga-face Al0.25Ga0.75N surface were characterized by similar band bending regardless of the polarization bound charge, suggesting a Fermi level pinning state ~0.4-0.8 eV below the conduction band minimum. On oxygen-free Ga-face GaN, Al0.15Ga0.85N, Al0.25Ga0.75N, and Al0.35Ga0.65N, band bending increased slightly with aluminum content and thus did not exhibit the same pinning behavior; however, there was still significant compensating charge on these surfaces (~1013 charges/cm2). This charge is likely related to nitrogen vacancies and/or gallium dangling bonds.

In addition, this wozrk investigated the interface electronic state configuration of dielectric/GaN and AlGaN interfaces with regards to deposition conditions and aluminum content. Specifically, oxygen plasma-enhanced atomic layer deposited (PEALD) was used to deposit SiO2. Growth temperature was shown to influence the film quality, where room temperature deposition produced the highest quality films in terms of electrical breakdown. In addition, the valence band offsets (VBOs) appeared to decrease with the deposition temperature, which likely related to an electric field across the Ga2O3 interfacial layer. VBOs were also determined with respect to aluminum content at the PEALD-SiO2/AlxGa1-xN interface, giving 3.0, 2.9, 2.9, and 2.8 eV for 0%, 15%, 25%, and 35% aluminum content, respectively—with corresponding conduction band offsets of 2.5, 2.2, 1.9, and 1.8 eV. This suggests the largest difference manifests in the conduction band, which is in agreement with the charge neutrality level model.
ContributorsEller, Brianna (Author) / Nemanich, Robert J (Thesis advisor) / Chowdhury, Srabanti (Committee member) / McCartney, Martha (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015