Matching Items (455)
Filtering by

Clear all filters

131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132592-Thumbnail Image.png
Description
In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point

In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point inhibitors (CPI), significantly slowed tumor growth, reduced pulmonary metastasis and increased the cell-mediated immune response. In terms of tumor volumes, the mPC FAST vaccine was comparable to the untreated controls. However, a significant difference in tumor volume did emerge when the mPC vaccine was used with CPI. The collective data indicated that the immune checkpoint blockade therapy was only beneficial with suboptimal neoantigens. More importantly, the FAST vaccine, though requiring notably less resources, performed similarly to the personalized version of the frameshift breast cancer vaccine in the same mouse model. Furthermore, because the frameshift peptide (FSP) array provided a strong rationale for a focused vaccine, the FAST vaccine can theoretically be expanded and translated to any human cancer type. Overall, the FAST vaccine is a promising treatment that would provide the most benefit to patients while eliminating most of the challenges associated with current personal cancer vaccines.
ContributorsMurphy, Sierra Nicole (Author) / Johnston, Stephen (Thesis director) / Peterson, Milene (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
The goal of this paper is to discuss the most efficient method to achieve early detection in lung cancers by reducing the occurrences of false-positive readings. Imaging techniques (computed tomography screenings) have greater impact than non-imaging techniques in early detection for lung cancer. On the other hand,

The goal of this paper is to discuss the most efficient method to achieve early detection in lung cancers by reducing the occurrences of false-positive readings. Imaging techniques (computed tomography screenings) have greater impact than non-imaging techniques in early detection for lung cancer. On the other hand, positron emission tomography and non-imaging techniques, such as liquid biopsy, are better at distinguishing cancer stages. Therefore, these techniques are not suitable early detection methods for lung cancer. Based on literature reviews, the combination that is most capable of early lung cancer detection incorporate low-dose computed tomography screenings, thin-section computed tomography screenings, and computer-aided diagnosis. Low-dose computed tomography screenings has lower radiation-associated risks compared to the standard-dose computed tomography. This technique can be used as both at the first examination and the follow-up examinations. Thin-section computed tomography screenings can be used as a supplement to check if there is any nodules that have not yet been discovered. Computer-aided diagnosis is an add-on method to make sure the computed tomography screenings images are being correctly labeled. Identifying other contributing factors to the effectiveness of the early lung cancer detection, such as the amount of forced expiratory volume, forced vital capacity, and the presence of emphysema, could also decrease the percentage of false positive outcomes.
ContributorsChuang, Hao-Yun (Author) / Johnston, Stephen (Thesis director) / Peterson, Milene (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23
133512-Thumbnail Image.png
Description
The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed cases of Congenital Zika Syndrome in infants, making a Zika Vaccine a high priority (Mitchell, 2018). SEPHODIS is a process that involves prolonged exposure of an object to a pulsing laser which can render it ineffective. Initially, ZIKV was subjected to laser inactivation for 6 hours, then a plaque assay was performed on both laser-treated and control samples. ZIKV was inactivated two-fold? after laser treatment, when compared with control, as indicated by the plaque assay results. Additionally, both samples were submitted to ELISA to evaluate antigenicity with a panel of monoclonal and human sera. As a second control, virus inactivated by formaldehyde (2%) was used. ELISA results showed that antigenicity of some proteins were preserved while others were probably disturbed. However, ELISA results show that ZIKV envelope protein (E-protein), the protein responsible for viral entry into cells, was effectively preserved after laser-treatment, implying that if laser parameters were tweaked to obtain more complete inactivation, then SEPHODIS may be an appropriate source for the development of a vaccine.
ContributorsViafora, Ataiyo Blue (Author) / Johnston, Stephen (Thesis director) / Tsen, Kong-Thon (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133270-Thumbnail Image.png
Description
Blood donations today undergo extensive screening for transfusion transmitted infections (TTI) since the discovery of the first infectious agent in the early 1900s. Nucleic Acid Testing (NAT) is a serological test used widely in disease detection. NAT is known to rapidly and effectively detect pathogenic genomic material in blood by

Blood donations today undergo extensive screening for transfusion transmitted infections (TTI) since the discovery of the first infectious agent in the early 1900s. Nucleic Acid Testing (NAT) is a serological test used widely in disease detection. NAT is known to rapidly and effectively detect pathogenic genomic material in blood by reducing the "window period" of infection. However, NAT produces false negative results for disease positive samples posing a risk of disease transmission. Therefore, NAT is used in conjunction with the Enzyme-Linked Immunosorbent Assay (ELISA) to mitigate these risks. However, the ELISA assay also poses the same risk as NAT. This study proposes immunosignaturing as an alternative serological test that may combat this risk and investigates whether it would be more effective than other standardized serological tests in disease detection. Immunosignaturing detects antibodies by utilizing a microarray of randomized peptide sequences. Immunosignaturing provides information about an individual's immune health from the pattern of reactivity of antibody-peptide binding. Unlike ELISA and NAT, immunosignaturing can be programmed to detect any disease and detect multiple diseases simultaneously. Using ELISA, NAT, and immunosignaturing, immune profiles of asymptomatic patients were constructed for 10 different classes of blood borne diseases. A pattern of infection was identified for each disease and the sensitivity and specificity of these assays were assessed relative to each other. Results indicate that immunosignaturing can be a viable diagnostic tool in blood testing. Immunosignatures demonstrated increased sensitivity and specificity compared to ELISA and NAT in discerning disease positive and negative samples within and across different classes of disease.
ContributorsSharma, Megumi (Author) / McFadden, Grant (Thesis director) / Nickerson, Cheryl (Committee member) / Green, Alex (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134876-Thumbnail Image.png
Description
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
ContributorsMujahed, Tala (Author) / Johnston, Stephen (Thesis director) / Blattman, Joseph (Committee member) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134658-Thumbnail Image.png
Description
Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with

Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with the vaccine and pharmaceutical markets to significantly lower their costs. Smartphones and computers were the two main items investigated while the two main items from the scientific standpoint were vaccines and pharmaceuticals. One concept had the ability to conceivably decrease the costs of vaccines and drugs and that was "market competition". If the United States were able to allow competition within the vaccine and drug companies, it would allow for the product prices to be best affected. It would only take a few small companies to generate generic versions of the drugs and decrease the prices. It would force the larger competition to most likely decrease their prices. Furthermore, the PC companies use a cumulative density function (CDF) to effectively divide their price setting in each product cycle. It was predicted that if this CDF model were applied to the vaccine and drug markets, the prices would no longer have to be extreme. The corporations would be able to set the highest price for the wealthiest consumers and then slowly begin to decrease the costs for the middle and lower class. Unfortunately, the problem within the vaccine and pharmaceutical markets was not the lack of innovation or business models. The problem lied with their liberty to choose product costs due to poor U.S. government regulations.
ContributorsCalderon, Gerardo (Author) / Johnston, Stephen (Thesis director) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12