Matching Items (234)
Filtering by

Clear all filters

127848-Thumbnail Image.png
Description

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in library-based applications. Here we describe a simple approach for sequence analysis directly on solid surfaces that is both high speed and high throughput, utilizing equipment available in most protein analysis facilities. In this approach, surface bound peptides, selectively labeled at their N-termini with a positive charge-bearing group, are subjected to controlled degradation in ammonia gas, resulting in a set of fragments differing by a single amino acid that remain spatially confined on the surface they were bound to. These fragments can then be analyzed by MALDI mass spectrometry, and the peptide sequences read directly from the resulting spectra.

ContributorsZhao, Zhan-Gong (Author) / Cordovez, Lalaine Anne (Author) / Johnston, Stephen (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2017-12-19
127830-Thumbnail Image.png
Description

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention for a new pathogen. We tested the feasibility of a system based on antimicrobial synbodies. The system involves creating an array of 100 peptides that have been selected for broad capability to bind and/or kill viruses and bacteria. The peptides are pre-screened for low cell toxicity prior to large scale synthesis. Any pathogen is then assayed on the chip to find peptides that bind or kill it. Peptides are combined in pairs as synbodies and further screened for activity and toxicity. The lead synbody can be quickly produced in large scale, with completion of the entire process in one week.

ContributorsJohnston, Stephen (Author) / Domenyuk, Valeriy (Author) / Gupta, Nidhi (Author) / Tavares Batista, Milene (Author) / Lainson, John (Author) / Zhao, Zhan-Gong (Author) / Lusk, Joel (Author) / Loskutov, Andrey (Author) / Cichacz, Zbigniew (Author) / Stafford, Phillip (Author) / Legutki, Joseph Barten (Author) / Diehnelt, Chris (Author) / Biodesign Institute (Contributor)
Created2017-12-14
128628-Thumbnail Image.png
Description

Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling

Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling approach to capture the distributions of the number of secondary cases that arise in the community and health care settings in the context of changing population behaviors and increasing hospital capacity. Their findings underscore the role of increasing the rate of safe burials and the fractions of infectious individuals who seek hospitalization together with hospital capacity to achieve epidemic control. However, further modeling efforts of EVD transmission and control in West Africa should utilize the spatial-temporal patterns of spread in the region by incorporating spatial heterogeneity in the transmission process. Detailed datasets are urgently needed to characterize temporal changes in population behaviors, contact networks at different spatial scales, population mobility patterns, adherence to infection control measures in hospital settings, and hospitalization and reporting rates.

Created2015-01-21
128632-Thumbnail Image.png
Description

Background: Ebola virus disease (EVD) has generated a large epidemic in West Africa since December 2013. This mini-review is aimed to clarify and illustrate different theoretical concepts of infectiousness in order to compare the infectiousness across different communicable diseases including EVD.

Methods: We employed a transmission model that rests on the

Background: Ebola virus disease (EVD) has generated a large epidemic in West Africa since December 2013. This mini-review is aimed to clarify and illustrate different theoretical concepts of infectiousness in order to compare the infectiousness across different communicable diseases including EVD.

Methods: We employed a transmission model that rests on the renewal process in order to clarify theoretical concepts on infectiousness, namely the basic reproduction number, R0, which measures the infectiousness per generation of cases, the force of infection (i.e. the hazard rate of infection), the intrinsic growth rate (i.e. infectiousness per unit time) and the per-contact probability of infection (i.e. infectiousness per effective contact).

Results: Whereas R0 of EVD is similar to that of influenza, the growth rate (i.e. the measure of infectiousness per unit time) for EVD was shown to be comparatively lower than that for influenza. Moreover, EVD and influenza differ in mode of transmission whereby the probability of transmission per contact is lower for EVD compared to that of influenza.

Conclusions: The slow spread of EVD associated with the need for physical contact with body fluids supports social distancing measures including contact tracing and case isolation. Descriptions and interpretations of different variables quantifying infectiousness need to be used clearly and objectively in the scientific community and for risk communication.

Created2015-01-06
128552-Thumbnail Image.png
Description

Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B[subscript 0] = 306(6) GPa and its pressure derivative B0′ = 6.4(5).

Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B[subscript 0] = 306(6) GPa and its pressure derivative B0′ = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements.

ContributorsWang, Pei (Author) / Wang, Yonggang (Author) / Wang, Liping (Author) / Zhang, Xinyu (Author) / Yu, Xiaohui (Author) / Zhu, Jinlong (Author) / Wang, Shanmin (Author) / Qin, Jiaqian (Author) / Leinenweber, Kurt (Author) / Chen, Haihua (Author) / He, Duanwei (Author) / Zhao, Yusheng (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2016-02-24
128503-Thumbnail Image.png
Description

Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that

Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that a large strain amplitude makes a fragile liquid become stronger, reduces dynamical heterogeneity at the glass transition and broadens the loss spectra asymmetrically, in addition to speeding up the relaxation dynamics. These findings demonstrate the distinctive roles of strain compared with temperature on the relaxation dynamics and indicate that dynamical heterogeneity inherently relates to the fragility of glass-forming materials.

ContributorsYu, Hai-Bin (Author) / Richert, Ranko (Author) / Maass, Robert (Author) / Samwer, Konrad (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-18
128512-Thumbnail Image.png
Description

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina,

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and the USA. Yet, the role of sexual transmission on the spread and control of ZIKV infection is not well-understood. We introduce a mathematical model to investigate the impact of mosquito-borne and sexual transmission on the spread and control of ZIKV and calibrate the model to ZIKV epidemic data from Brazil, Colombia, and El Salvador. Parameter estimates yielded a basic reproduction number R0 = 2.055 (95% CI: 0.523–6.300), in which the percentage contribution of sexual transmission is 3.044% (95% CI: 0.123–45.73). Our sensitivity analyses indicate that R0 is most sensitive to the biting rate and mortality rate of mosquitoes while sexual transmission increases the risk of infection and epidemic size and prolongs the outbreak. Prevention and control efforts against ZIKV should target both the mosquito-borne and sexual transmission routes.

ContributorsGao, Daozhou (Author) / Lou, Yijun (Author) / He, Daihai (Author) / Porco, Travis C. (Author) / Kuang, Yang (Author) / Chowell-Puente, Gerardo (Author) / Ruan, Shigui (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-06-17
129505-Thumbnail Image.png
Description

Attempts to prepare low-valent molybdenum complexes that feature a pentadentate 2,6-bis(imino)pyridine (or pyridine diimine, PDI) chelate allowed for the isolation of two different products. Refluxing Mo(CO)6 with the pyridine-substituted PDI ligand, PyEtPDI, resulted in carbonyl ligand substitution and formation of the respective bis(ligand) compound (PyEtPDI)2Mo (1). This complex was investigated

Attempts to prepare low-valent molybdenum complexes that feature a pentadentate 2,6-bis(imino)pyridine (or pyridine diimine, PDI) chelate allowed for the isolation of two different products. Refluxing Mo(CO)6 with the pyridine-substituted PDI ligand, PyEtPDI, resulted in carbonyl ligand substitution and formation of the respective bis(ligand) compound (PyEtPDI)2Mo (1). This complex was investigated by single-crystal X-ray diffraction, and density functional theory calculations indicated that 1 possesses a Mo(0) center that back-bonds into the π*-orbitals of the unreduced PDI ligands. Heating an equimolar solution of Mo(CO)[subscript 6] and the phosphine-substituted PDI ligand, Ph2PPrPDI, to 120 °C allowed for the preparation of (Ph2PPrPDI)Mo(CO) (2), which is supported by a κ5-N,N,N,P,P-Ph2PPrPDI chelate. Notably, 1 and 2 have been found to catalyze the hydrosilylation of benzaldehyde at 90 °C, and the optimization of 2-catalyzed aldehyde hydrosilylation at this temperature afforded turnover frequencies of up to 330 h–1. Considering additional experimental observations, the potential mechanism of 2-mediated carbonyl hydrosilylation is discussed.

ContributorsPal, Raja (Author) / Groy, Thomas (Author) / Bowman, Amanda C. (Author) / Trovitch, Ryan (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01
129547-Thumbnail Image.png
Description

A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was conceived. The reductive transformations achieved using this catalyst are described and put into further context by comparing the observed activities with those attained for leading late

A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was conceived. The reductive transformations achieved using this catalyst are described and put into further context by comparing the observed activities with those attained for leading late first-row transition-metal catalysts.

ContributorsTrovitch, Ryan (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
128753-Thumbnail Image.png
Description

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

ContributorsLiu, Hai-Ning (Author) / Gao, Li-Dong (Author) / Chowell-Puente, Gerardo (Author) / Hu, Shi-Xiong (Author) / Lin, Xiao-Ling (Author) / Li, Xiu-Jun (Author) / Ma, Gui-Hua (Author) / Huang, Ru (Author) / Yang, Hui-Suo (Author) / Tian, Huaiyu (Author) / Xiao, Hong (Author) / Simon M. Levin Mathematical, Computational and Modeling Sciences Center (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-09-03