Matching Items (79)
Filtering by

Clear all filters

151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
135560-Thumbnail Image.png
Description
This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.
ContributorsAmrelia, Divya Vikas (Author) / Brafman, David (Thesis director) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136699-Thumbnail Image.png
Description
Colorectal cancer (CRC) is one of the most highly diagnosed cancers in the United States and accounts for 9.5% of all new cancer cases worldwide. With a 50% five-year prognosis, it is the second highest cancerous cause of death in the U.S. CRC tumors express antigens that are capable of

Colorectal cancer (CRC) is one of the most highly diagnosed cancers in the United States and accounts for 9.5% of all new cancer cases worldwide. With a 50% five-year prognosis, it is the second highest cancerous cause of death in the U.S. CRC tumors express antigens that are capable of inducing an immune response. The identification of autoantibodies (AAb) against tumor-associated antigens (TAA) may facilitate personalized tumor treatment in the form of targeted immunotherapy. The objective of this study was to observe the AAb expression raised against a 2000 human gene survey in late-stage colorectal cancer using the Nucleic Acid Programmable Protein Arrays (NAPPA). AAbs from serum samples were collected from 80 patients who died within 24 months of their last blood draw and 80 age and gender matched healthy control were profiled using NAPPA. TAA p53, a well-established protein that is one of the most highly mutated across a variety of cancers, was one of the top candidates based on statistical analysis, which, along with its family proteins p63 and p73 (which showed inverse AAb response profiles) warranted further testing via RAPID ELISA. Statistical analysis from these results revealed an inverse differential relationship between p53 and p63, in which p53 seropositivity was higher in patients than in controls, while the opposite was unexpectedly the case for p63. This study involving the AAb immunoprofiling of advanced stage CRC patients is one of the first to shed light on the high-throughput feasibility of immunoproteomic experiments using protein arrays as well as the identification of immunotherapy targets in a more rapid move towards specialized treatment of advanced CRC.
ContributorsSzeto, Emily (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Demirkan, Gokhan (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-12
137735-Thumbnail Image.png
Description
The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral

The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral response in T1D patients using our innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA). In this study, each viral gene was individually captured using various PCR based techniques, cloned into a protein expression vector, and assembled as the first version of T1D viral protein array. Humoral responses of IgG, IgA, and IgM were examined. Although each class of immunoglobulin generated a wide-range of reactivity, responses to various viral proteins from different proteins were observed. In summary, we captured most of the T1D related viral genes, established viral protein expression on the protein array, and displayed the serum response on the viral protein array. The successful progress will help to fulfill the long term goal of testing the viral infection hypothesis in T1D development.
ContributorsDavis, Amy Darlene (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Desi, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137802-Thumbnail Image.png
Description
Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer patients were used to discover these tumor associated biomarkers on protein microarrays. Six candidate biomarkers were discovered from 22 heavy chain-only variable region antibody fragments screened. Validation tests are necessary to confirm the tumorgenicity of these antigens. However, the use of single-chain variable autoantibody fragments presents a novel platform for diagnostics and cancer therapeutics.
ContributorsSharman, M. Camila (Author) / Magee, Dewey (Mitch) (Thesis director) / Wallstrom, Garrick (Committee member) / Petritis, Brianne (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / Virginia G. Piper Center for Personalized Diagnostics (Contributor) / Biodesign Institute (Contributor)
Created2012-12
137471-Thumbnail Image.png
Description
AMPylation is a post-translation modification that has an important role in the survival of many bacterial pathogens by affecting the host cell's molecular signaling. In the course of studying this intercellular manipulation, there has only been modest progression in the identification of the enzymes with AMPylation capabilities (AMPylators) and their

AMPylation is a post-translation modification that has an important role in the survival of many bacterial pathogens by affecting the host cell's molecular signaling. In the course of studying this intercellular manipulation, there has only been modest progression in the identification of the enzymes with AMPylation capabilities (AMPylators) and their respective targets. The reason for these minimal developments is the inability to analyze a large subset of these proteins. Therefore, to increase the efficiency of the identification and characterization of the proteins, Yu et al developed a high-throughput non-radioactive discovery platform using Human Nucleic Acid Programmable Protein Arrays (NAPPA) and a validation platform using bead-based assays. The large-scale unbiased screening of potential substrates for two bacterial AMPylators containing Fic domain, VopS and IbpAFic2, had been performed and dozens of novel substrates were identified and confirmed. With the efficiency of this method, the platform was extended to the identification of novel substrates for a Legionella virulence factor, SidM, containing a different adenylyl transferase domain. The screening was performed using NAPPA arrays comprising of 10,000 human proteins, the active AMPylator SidM, and its inactive D110/112A mutant as a negative control. Many potential substrates of SidM were found, including Rab GTPases and non-GTPase proteins. Several of which have been confirmed with the bead-based AMPylation assays.
ContributorsGraves, Morgan C. (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Yu, Xiaobo (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131790-Thumbnail Image.png
Description
Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used

Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used as a factor to asses cell viability in an in-line assay. Siloxane based pO2 sensing nanoprobes present a modality to visualize intracellular pO2. Using fluorescent lifetime imaging microscopy (FLIM), pO2 levels can be mapped intracellular as a highly functional in-line assay for cell viability. FLIM is an imaging modality that reconstructs an image based of its fluorescent lifetime. Nanoprobes were synthesized in different manufacturing/storage conditions. The nanoprobes for both long- and short-term storage were characterized in a cell free environment testing for changes in fluorescent intensity, average and maximum nanoprobe diameter. The nanoprobes were validated in two different culture systems, 2D and microcarrier culture systems, for human derived neural progenitor cells (NPCs) and neurons. Long- and short-term storage nanoprobes were used to label different neuronal based culture systems to asses labeling efficiency through fluorescent microscopy and flow cytometry. NPCs and neurons in each culture system was tested to see if nanoprobe labeling effected cellular phenotype for traits such as: cell proliferation, gene expression, and calcium imaging. Long-term and short-term storage nanoprobes were successfully validated for both NPCs and neurons in all culture systems. Assessments of the pO2 sensing nanoprobes will be further developed to create a highly functional and efficient in-line test for cell viability.
ContributorsLeyasi, Salma (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131688-Thumbnail Image.png
Description
Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s

Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s is a multifactorial disease, giving rise to two main types: familial AD (FAD) and sporadic AD (SAD). Although there are different factors associated with each type of the disease, both FAD and SAD result in neuronal and synaptic loss and remain difficult to model in-vitro and treat overall.

Current advances in cellular models of neurodegenerative diseases overcome a variety of limitations possessed in animal and post-mortem human models. Human-induced pluripotent stem cells (hiPSCs) provide a platform with cells that can self-renew and differentiate into mature and functional cell types. HiPSCs are at the forefront of neurodegenerative disease research because of their ability to differentiate into neural cell types. Apolipoprotein E (ApoE) is a protein encoded by the APOE gene found on chromosome 19 of the human genome. There are three common polymorphisms in the APOE gene, resulting from a single amino acid change in the protein. The presence of these polymorphisms are studied as associated risk factors of developing AD. Different combinations of these alleles closely relate to the risk a patient has in developing Alzheimer’s disease. The risk associated effects of this gene are primarily investigated, however the protective effects are not examined to the same extent.

This research aims to overcome the existing limitations in cell differentiations and improve cell population purity that limits the variables present in the culture. To do this, this study optimized a differentiation protocol by separating and purifying neuronal cell populations to study the potential protective effects associated with ApoE, a risk factor seen in SAD. This platform aims to use a purified cell population to effectively analyze cell type specific affects of the ApoE risk factor, specifically in neurons.
ContributorsFrisch, Carlye Arin (Author) / Brafman, David (Thesis director) / Tian, Xiaojun (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05