Matching Items (142)
Filtering by

Clear all filters

147708-Thumbnail Image.png
Description

With the accelerated emergence of telehealth systems being deployed with promises to access unreachable populations in today’s socially distant environment, it is increasingly important to understand the barriers that underprivileged populations face when trying to access healthcare through digital platforms. This research investigates the use of telehealth in social and

With the accelerated emergence of telehealth systems being deployed with promises to access unreachable populations in today’s socially distant environment, it is increasingly important to understand the barriers that underprivileged populations face when trying to access healthcare through digital platforms. This research investigates the use of telehealth in social and cultural sub-populations, focusing on how the diverse student population at Arizona State University (ASU) use the recently-launched ASU Telehealth system. Statistical analysis of demographic factors spanning the five categories of social determinants of health were coupled with population studies of the ASU student body to evaluate the reach of services and patient diversity across telehealth and in person health platforms. Results show that insurance, racial and international student identity influence the percentage of students within these demographic categories Also, though the ASU Telehealth patient body reflects ASU’s general student population, the platform did not increase the reach of Health Services and the magnitude of students served. using ASU Telehealth. Due to the COVID-19 pandemic, it is difficult to determine the validity and reliability of these findings. However, the findings and background research point to targeted marketing campaigns, intentional policy decision-making, post-pandemic telehealth resilience, and the continuation of quantitative and qualitative data collection as means to expand the impact and equity of ASU Telehealth into future iterations of the platform. Outputs of this study include web communication materials and qualitative data collection mechanisms for future use and implementation by ASU Health Services.

ContributorsShrikant, Maya Liza (Author) / Krasnow, Aaron (Thesis director) / Hruschka, Daniel (Committee member) / School for the Future of Innovation in Society (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132222-Thumbnail Image.png
Description
The main purpose of this investigation is to determine the intensity, economic costs, and potential solutions to HIV/AIDS stigma in the United States and Tanzania. In order to accomplish this goal, a literature review was conducted, and an economic model was created to determine how HIV/AIDS treatment deterrence manifests and

The main purpose of this investigation is to determine the intensity, economic costs, and potential solutions to HIV/AIDS stigma in the United States and Tanzania. In order to accomplish this goal, a literature review was conducted, and an economic model was created to determine how HIV/AIDS treatment deterrence manifests and affects these countries. The results of the economic model suggested that Tanzania suffers greater economic loss due to HIV treatment deterrence than the United States, however, both countries lose a significant portion of GDP due to HIV treatment deterrence. Stigma materializes differently in each country based on a variety of sociocultural factors. These include the demographic groups most affected, the perception of those living with HIV, and how sexually transmitted infections are perceived within communities. The solutions to HIV stigma must be tailored to the country, culture, and context that it arises for interventions to be effective. To further prevent HIV/AIDS stigma and its economic consequences, the etiology of stigma and how it presents in different communities must be understood.
ContributorsSangha, Pooja (Co-author) / Hopewell, Sophia (Co-author) / Baldwin, Marjorie (Thesis director) / Hruschka, Daniel (Committee member) / Department of Psychology (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131837-Thumbnail Image.png
Description
This paper explores the impacts of dam-induced displacement on the health of populations. By the start of the 21st century, an estimated 40-80 million people worldwide were forced to resettle due to the construction of large dams. The process of displacement and resettlement is connected to numerous social impacts on

This paper explores the impacts of dam-induced displacement on the health of populations. By the start of the 21st century, an estimated 40-80 million people worldwide were forced to resettle due to the construction of large dams. The process of displacement and resettlement is connected to numerous social impacts on communities such as decreases in household income, natural resources, and social connectivity, but less seems to be known about specific health impacts. Analyzing literature in a formal review allowed for increased understanding about what information already exists in published research regarding the connections between dams, displacement, and health. Some negative health impacts as a result of forced displacement were identified, including increases in infectious disease transmission, depression, and mortality rates as well as losses of food and water sources. However, the small amount of cases found in the literature review when compared to the massive scale of dam development worldwide indicates a gap in knowledge in the dam industry and research field specifically about the health of the vast majority of populations forcibly displaced by dams. Health impacts must be considered and systematically studied in dam projects involving displacement to fully understand the needs of resettled populations and move towards equitable processes in development projects worldwide.
ContributorsWalker, Erika (Author) / Hruschka, Daniel (Thesis director) / Brian, Jennifer (Committee member) / Drake, Alexandria (Committee member) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131790-Thumbnail Image.png
Description
Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used

Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used as a factor to asses cell viability in an in-line assay. Siloxane based pO2 sensing nanoprobes present a modality to visualize intracellular pO2. Using fluorescent lifetime imaging microscopy (FLIM), pO2 levels can be mapped intracellular as a highly functional in-line assay for cell viability. FLIM is an imaging modality that reconstructs an image based of its fluorescent lifetime. Nanoprobes were synthesized in different manufacturing/storage conditions. The nanoprobes for both long- and short-term storage were characterized in a cell free environment testing for changes in fluorescent intensity, average and maximum nanoprobe diameter. The nanoprobes were validated in two different culture systems, 2D and microcarrier culture systems, for human derived neural progenitor cells (NPCs) and neurons. Long- and short-term storage nanoprobes were used to label different neuronal based culture systems to asses labeling efficiency through fluorescent microscopy and flow cytometry. NPCs and neurons in each culture system was tested to see if nanoprobe labeling effected cellular phenotype for traits such as: cell proliferation, gene expression, and calcium imaging. Long-term and short-term storage nanoprobes were successfully validated for both NPCs and neurons in all culture systems. Assessments of the pO2 sensing nanoprobes will be further developed to create a highly functional and efficient in-line test for cell viability.
ContributorsLeyasi, Salma (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131688-Thumbnail Image.png
Description
Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s

Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s is a multifactorial disease, giving rise to two main types: familial AD (FAD) and sporadic AD (SAD). Although there are different factors associated with each type of the disease, both FAD and SAD result in neuronal and synaptic loss and remain difficult to model in-vitro and treat overall.

Current advances in cellular models of neurodegenerative diseases overcome a variety of limitations possessed in animal and post-mortem human models. Human-induced pluripotent stem cells (hiPSCs) provide a platform with cells that can self-renew and differentiate into mature and functional cell types. HiPSCs are at the forefront of neurodegenerative disease research because of their ability to differentiate into neural cell types. Apolipoprotein E (ApoE) is a protein encoded by the APOE gene found on chromosome 19 of the human genome. There are three common polymorphisms in the APOE gene, resulting from a single amino acid change in the protein. The presence of these polymorphisms are studied as associated risk factors of developing AD. Different combinations of these alleles closely relate to the risk a patient has in developing Alzheimer’s disease. The risk associated effects of this gene are primarily investigated, however the protective effects are not examined to the same extent.

This research aims to overcome the existing limitations in cell differentiations and improve cell population purity that limits the variables present in the culture. To do this, this study optimized a differentiation protocol by separating and purifying neuronal cell populations to study the potential protective effects associated with ApoE, a risk factor seen in SAD. This platform aims to use a purified cell population to effectively analyze cell type specific affects of the ApoE risk factor, specifically in neurons.
ContributorsFrisch, Carlye Arin (Author) / Brafman, David (Thesis director) / Tian, Xiaojun (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131559-Thumbnail Image.png
Description
In Western medicine, the hard sciences have generally been understood as the sole guiding force in patient care and treatment. However, both history and the present day suggest another strong influence on Western medicine: folklore. The term folklore can easily be dismissed as a term representing beliefs and stories of

In Western medicine, the hard sciences have generally been understood as the sole guiding force in patient care and treatment. However, both history and the present day suggest another strong influence on Western medicine: folklore. The term folklore can easily be dismissed as a term representing beliefs and stories of the past, but its relevance transcends time and continues to impact people daily. It “involves values, traditions, ways of thinking and behaving. It’s about art. It’s about people and the way people learn. It helps us learn who we are and how to make meaning in the world around us” (Sims & Stephens, 2011, pp. 1-2). With its wide range of influence, folklore exists as the umbrella term encompassing several categories. Folk beliefs are one of these categories and can develop from “observation, memory, testimony or inference” (Hutton, 1942, p. 83). Given that each of these forms are subject to some sort of error, folk beliefs become “a jumble of the true and the erroneous” (p. 84). Similarly, contemporary legends are narratives that often combine the physical and supernatural world to explain nuances or uncertainty present in the relevant experiences of a people. Folk beliefs can result in the formation of contemporary legends and they can also stem from contemporary legends. These two categories are often associated with subjects that promote fear and uncertainty, and thus play an essential role in navigating folklore’s application to biomedicine. This paper explores the historical and modern effects that folklore has had on two separate maladies: Hansen’s Disease (leprosy) and Major Depressive Disorder (depression). While these conditions do not resemble each other in physical presentations, Hansen’s Disease and Major Depressive Disorder patients both have faced and continue to face discrimination. Andrea Wiley and John Allen’s three-part definition of a malady: society’s perception (sickness), the individual’s experience (illness), and medical professionals’ diagnosis and treatment (disease); was utilized as a tool for analyzing the application of folklore to modern medicine. The way that a society views a particular malady often dictates the sick role expected of a diagnosed individual. Additionally, the public’s view can directly affect medical professionals’ understanding of a malady. This then can drastically shape a patient’s diagnosis, treatment, and prognosis. This anthropological analysis acts as an interdisciplinary bridge between medicine and the humanities.
ContributorsPeake, Ashley E (Co-author) / Peake, Ashley (Co-author) / Ellis, Lawrence (Thesis director) / Hoyt, Heather (Committee member) / Hruschka, Daniel (Committee member) / School of Molecular Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132624-Thumbnail Image.png
Description
Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models

Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models can overcome the lack of clinical relevance and impracticality associated with current models. Ideally, the use of stem cell models provides the foundation to study the biochemical and physiological aspects of Alzheimer’s disease, but at the cellular level. Moreover, the future of drug development and disease modeling can be improved by developing a reproducible and well-characterized model of AD that can be scaled up to meet requirements for basic and translational applications. Characterization and analysis of a heterogenic neuronal culture developed from induced pluripotent stem cells calls for the understanding of single cell identity and cell viability. A method to analyze RNA following intracellular sorting was developed in order to analyze single cell identity of a heterogenic population
of human induced pluripotent stem cells and neural progenitor cells. The population was intracellularly stained and sorted for Oct4. RNA was isolated and analyzed with qPCR, which demonstrated expected expression profiles for Oct4+ and Oct4- cells. In addition, a protocol to label cells with pO2 sensing nanoprobes was developed to assess cell viability. Non-destructive nanoprobe up-take by neural progenitor cells was assessed with fluorescent imaging and flow cytometry. Nanoprobe labeled neurons were cultured long-term and continued to fluoresce at day 28. The proof of concept experiments demonstrated will be further expanded upon and utilized in developing a more clinically relevant and cost-effective model of Alzheimer’s disease with downstream applications
in drug development and regenerative medicine.
ContributorsKnittel, Jacob James (Author) / Brafman, David (Thesis director) / Salvatore, Oddo (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05