Matching Items (84)
Filtering by

Clear all filters

151797-Thumbnail Image.png
Description
The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and physiological, that bacteria employ to circumvent the bactericidal activities of AMPs. These understandings will allow researchers to overcome challenges posed with the development of new drug therapies; as well as identify, at a fundamental level, how bacteria are able to adapt and survive within varied host environments. Here, results are presented from the first reported large scale, systematic screen in which the Keio collection of ~4,000 Escherichia coli deletion mutants were challenged against physiologically significant AMPs to identify genes required for resistance. Less than 3% of the total number of genes on the E. coli chromosome was determined to contribute to bacterial resistance to at least one AMP analyzed in the screen. Further, the screen implicated a single cellular component (enterobacterial common antigen, ECA) and a single transporter system (twin-arginine transporter, Tat) as being required for resistance to each AMP class. Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent analyses were able to identify a two-component system, CpxR/CpxA, as a global regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A members, as well as members found in this study, were identified in the screen. Notably, CpxR/A was found to transcriptionally regulate the gene cluster responsible for the biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly correlates with a physiologically significant cellular component that appears to globally contribute to bacterial resistance to AMPs.
ContributorsWeatherspoon-Griffin, Natasha (Author) / Shi, Yixin (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Misra, Rajeev (Committee member) / Nickerson, Cheryl (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
151292-Thumbnail Image.png
Description
In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be

In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be associated with the mitotic spindle. In the study in chapter 2, we show the enrichment of active (phosphorylated) PKCæ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases, PKC and GSK3â are associated with the mitotic spindle, first, the co-localization and close molecular proximity of PKC isoforms with GSK3â was studied in metaphase cells. Second, the involvement of inactive GSK3â in maintaining an intact mitotic spindle was shown. Third, this study showed that addition of a phospho-PKCæ specific inhibitor to cells can disrupt the mitotic spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCæ acting through GSK3â. The MAPK pathway has been implicated in various functions related to cell cycle regulation. MAPKK (MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its known downstream target. GSK3â and PKCæ also have been implicated in cell cycle regulation. In the study in chapter 3, we tested the effects of inhibiting MEK on the activities of ERK, GSK3â, PKCæ, and á-tubulin. Results from this study indicate that inhibition of MEK did not inhibit GSK3â and PKCæ enrichment at the centrosomes. However, the mitotic spindle showed a reduction in the pixel intensity of microtubules and also a reduction in the number of cells in each of the M-phase stages. A peptide activation inhibitor of ERK was also used. Our results indicated a decrease in mitotic spindle microtubules and an absence of cells in most of the M-phase stages. GSK3â and PKCæ enrichment were however not inhibited at the centrosomes. Taken together, the kinases GSK3â and PKCæ may not function as a part of the MAPK pathway to regulate the mitotic spindle.
ContributorsChakravadhanula, Madhavi (Author) / Capco, David G. (Thesis advisor) / Chandler, Douglas (Committee member) / Clark-Curtiss, Josephine (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2012
150424-Thumbnail Image.png
Description
The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and

The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and is seen in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cases. Currently, the first line of treatment is the Abl specific inhibitor Imatinib. Some patients will, however, develop resistance to Imatinib. Research has shown how transformation of progenitor B cells with v-Abl, an oncogene expressed by the Abelson murine leukemia virus, causes rapid proliferation, prevents further differentiation and produces a potentially malignant transformation. We have used progenitor B cells transformed with a temperature-sensitive form of the v-Abl protein that allows us to inactivate or re-activate v-Abl by shifting the incubation temperature. We are trying to use this line as a model to study both the progression from pre-malignancy to malignancy in CML and Imatinib resistance in Ph+ ALL and CML. These progenitor B cells, once v-Abl is reactivated, in most cases, will not return to their natural cell cycle. In this they resemble Ph+ ALL and CML under Imatinib treatment. With some manipulation these cells can break this prolonged G1 arrested phenotype and become a malignant cell line and resistant to Imatinib treatment. Cellular senescence can be a complicated process requiring inter-play between a variety of players. It serves as an alternate option to apoptosis, in that the cell loses proliferative potential, but does not die. Treatment with some cancer therapeutics will induce senescence in some cancers. Such is the case with Imatinib treatment of CML and Ph+ ALL. By using the S9 cell line we have been able to explore the possible routes for breaking of prolonged G1 arrest in these Ph+ leukemias. We inhibited the DNA damage sensor protein ataxia telangiectasia mutated (ATM) and found that prolonged G1 arrest in our S9 cells was broken. While previous research has suggested that the DNA damage sensor protein ataxia-telangiectasia mutated (ATM) has little impact in CML, our research indicates that ATM may play a role in either senescence induction or release.
ContributorsDixon, Sarah E (Author) / Chang, Yung (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Touchman, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
151199-Thumbnail Image.png
Description
Salmonella enterica is a gastrointestinal (GI) pathogen that can cause systemic diseases. It invades the host through the GI tract and can induce powerful immune responses in addition to disease. Thus, it is considered as a promising candidate to use as oral live vaccine vectors. Scientists have been making great

Salmonella enterica is a gastrointestinal (GI) pathogen that can cause systemic diseases. It invades the host through the GI tract and can induce powerful immune responses in addition to disease. Thus, it is considered as a promising candidate to use as oral live vaccine vectors. Scientists have been making great efforts to get a properly attenuated Salmonella vaccine strain for a long time, but could not achieve a balance between attenuation and immunogenicity. So the regulated delayed attenuation/lysis Salmonella vaccine vectors were proposed as a design to seek this balance. The research work is progressing steadily, but more improvements need to be made. As one of the possible improvements, the cyclic adenosine monophosphate (cAMP) -independent cAMP receptor protein (Crp*) is expected to protect the Crp-dependent crucial regulator, araC PBAD, in these vaccine designs from interference by glucose, which decreases synthesis of cAMP, and enhance the colonizing ability by and immunogenicity of the vaccine strains. In this study, the cAMP-independent crp gene mutation, crp-70, with or without araC PBAD promoter cassette, was introduced into existing Salmonella vaccine strains. Then the plasmid stability, growth rate, resistance to catabolite repression, colonizing ability, immunogenicity and protection to challenge of these new strains were compared with wild-type crp or araC PBAD crp strains using western blots, enzyme-linked immunosorbent assays (ELISA) and animal studies, so as to evaluate the effects of the crp-70 mutation on the vaccine strains. The performances of the crp-70 strains in some aspects were closed to or even exceeded the crp+ strains, but generally they did not exhibit the expected advantages compared to their wild-type parents. Crp-70 rescued the expression of araC PBAD fur from catabolite repression. The strain harboring araC PBAD crp-70 was severely affected by its slow growth, and its colonizing ability and immunogenicity was much weaker than the other strains. The Pcrp crp-70 strain showed relatively good ability in colonization and immune stimulation. Both the araC PBAD crp-70 and the Pcrp crp-70 strains could provide certain levels of protection against the challenge with virulent pneumococci, which were a little lower than for the crp+ strains.
ContributorsShao, Shihuan (Author) / Curtiss, Roy (Thesis advisor) / Arizona State University (Publisher)
Created2012
151143-Thumbnail Image.png
Description
Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of

Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of these three proteins (and many of their homologs) are known, the exact mechanisms of interaction are still poorly understood. By mutational analysis of the TolC turn 1 residues, a drug hypersensitive mutant has been identified which is defective in functional interactions with AcrA and AcrB. Antibiotic resistant revertants carry alterations in both TolC and AcrA act by stabilizing functional complex assembly and opening of the TolC aperture, as monitored by stability of a labile TolC mutant and sensitivity to vancomycin, respectively. Alterations in the AcrB periplasmic hairpin loops lead to a similar antibiotic hypersensitivity phenotype and destabilized complex assembly. Likewise, alterations in TolC which constitutively open the aperture suppress this antibiotic sensitivity. Suppressor alterations in AcrA and AcrB partially restore antibiotic resistance by mediating stability of the complex. The AcrA suppressor alterations isolated in these studies map to the three crystallized domains and it is concluded they alter the AcrA conformation such that it is permanently fixed in an active state, which wild type only transiently goes through when activated by AcrB. Through this genetic evidence, a direct interaction between TolC and AcrB which is stabilized by AcrA has been proposed. In addition to stabilizing the interactions between TolC and AcrB, AcrA is also responsible for triggering opening of the TolC aperture by mediating energy flow from AcrB to TolC. By permanently altering the conformation of AcrA, suppressor mutants allow defective TolC or AcrB mutants to regain functional interactions lost by the initial mutations. The data provide the genetic proof for direct interaction between AcrB and that AcrA mediated opening of TolC requires AcrB as a scaffold.
ContributorsWeeks, Jon William (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Shi, Yixin (Committee member) / Clark-Curtiss, Josephine (Committee member) / Arizona State University (Publisher)
Created2012
135560-Thumbnail Image.png
Description
This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.
ContributorsAmrelia, Divya Vikas (Author) / Brafman, David (Thesis director) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137070-Thumbnail Image.png
Description
First-semester student retention is a constant priority for undergraduate institutions. The transition to the collegiate level, and to a new scholastic program and format, is frequently challenging academically and socially—for this reason, many first-semester course schedules for incoming freshman undergraduates feature an introductory seminar to ease transition to an undergraduate

First-semester student retention is a constant priority for undergraduate institutions. The transition to the collegiate level, and to a new scholastic program and format, is frequently challenging academically and socially—for this reason, many first-semester course schedules for incoming freshman undergraduates feature an introductory seminar to ease transition to an undergraduate lifestyle. Arizona State University features a required “Careers in the Life Sciences” course for its first-semester School of Life Sciences students, which has had tractable results in first semester student retention and academic success. Here, we evaluate a component of the seminar, the peer-mentorship program, for its efficacy in students’ first semester experience. Analysis of self-reports from 168 first-semester “mentees” and their 25 mentors indicates frequency of mentee-mentor contact was the best indicator of a higher first semester GPA, comfort with academic resources and study habits, and desire to engage in extracurricular activities and internships. These data indicate that access to a mentor who actively engages and verbally connects with their mentees is a valuable component of first-semester student academic integration and retention.
ContributorsMathews, Ian T. (Author) / Capco, David (Thesis director) / Clark-Curtiss, Josephine (Committee member) / Harrell, Carita (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
DescriptionA novel and unconventional approach for delivering a eukaryotic apoptosis factor, TNF-related apoptosis-inducing ligand (TRAIL), to cancer cells within and around necrotizing tumors by utilizing a S. Typhimurium purine requiring auxotroph as a biological vector to develop two anticancer therapies with multiple modality and broad economic feasibility.
ContributorsKoons, Andrew (Author) / Curtiss, Roy (Thesis director) / Lake, Douglas (Committee member) / Janthakahalli, Nagaraj Vinay (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131790-Thumbnail Image.png
Description
Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used

Cell viability is an important assessment in cell culture to characterize the health of the cell population and confirm if cells are alive. Morphology or end-line assays are used to determine cell viability of entire populations. Intracellular pO2 levels is indicative of cell health and metabolism that can be used as a factor to asses cell viability in an in-line assay. Siloxane based pO2 sensing nanoprobes present a modality to visualize intracellular pO2. Using fluorescent lifetime imaging microscopy (FLIM), pO2 levels can be mapped intracellular as a highly functional in-line assay for cell viability. FLIM is an imaging modality that reconstructs an image based of its fluorescent lifetime. Nanoprobes were synthesized in different manufacturing/storage conditions. The nanoprobes for both long- and short-term storage were characterized in a cell free environment testing for changes in fluorescent intensity, average and maximum nanoprobe diameter. The nanoprobes were validated in two different culture systems, 2D and microcarrier culture systems, for human derived neural progenitor cells (NPCs) and neurons. Long- and short-term storage nanoprobes were used to label different neuronal based culture systems to asses labeling efficiency through fluorescent microscopy and flow cytometry. NPCs and neurons in each culture system was tested to see if nanoprobe labeling effected cellular phenotype for traits such as: cell proliferation, gene expression, and calcium imaging. Long-term and short-term storage nanoprobes were successfully validated for both NPCs and neurons in all culture systems. Assessments of the pO2 sensing nanoprobes will be further developed to create a highly functional and efficient in-line test for cell viability.
ContributorsLeyasi, Salma (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05