Matching Items (107)
Filtering by

Clear all filters

136790-Thumbnail Image.png
Description
Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons,

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.
ContributorsDamari, Ben Aviv (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136797-Thumbnail Image.png
Description
Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system

Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system workers and queens are determined by their genotype (i.e., workers develop from interlineage crosses, queens from intralineage crosses). As such, J1 and J2 lineages are dependent on each other in order for colonies to produce both workers and reproductive queens. Given their genetic isolation and interdependence, we hypothesized that the CHCs of alate males and queens are affected by lineage, and that differences in the CHC profile are used for mate recognition. We tested these hypotheses by analyzing the lineage distributions of actively mating pairs (n=65), and compared them with the overall distribution of male and female sexuals (n=180). We additionally analyzed the five most abundant CHC compounds for 20 of the actively mating P. barbatus alate male and queen pairs to determine how variable the two lineages are between each sex. We found that mating pair distributions did not significantly differ from those expected under a random mating system (�2= 1.4349, P= 0.6973), however, CHC profiles did differ between J1 and J2 lineages and sexes for the five most abundant CHC compounds. Our results show that random mating is taking place in this population, however given the differences observed in CHC profiles, mate recognition could be taking place.
ContributorsTula Del Moral Testai, Pedro Rafael (Co-author) / Cash, Elizabeth (Co-author) / Gadau, Juergen (Thesis director) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137047-Thumbnail Image.png
Description
Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality

Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality are up for debate. These ants are adept at choosing a nest site, making a collective decision based on complex interactions between the many individual choices made by workers. Colonies will migrate between nests either upon the destruction of their current home or the discovery of a sufficiently superior nest. This study offers a descriptive analysis of the heuristics potentially used in nest-site decision-making. Colonies were offered a choice of nests characterized by the Ebbinghaus Illusion: a perceptual illusion which effectively causes the viewer to perceive a circle as larger when it is surrounded by small circles than when that same circle is surrounded by large circles. Colonies were separated into two conditions: in one, they were given the option to move to a high-quality nest surrounded by poor-quality nests, and in the other they were given the option to move to a high-quality nest surrounded by medium-quality nests. The colonies in the poor condition were found to be more likely to move to the good nest than were colonies in the medium condition at a statistically significant level. That is, they responded to the Ebbinghaus Effect in the way that is normally expected. This result was discussed in terms of its implications for the ecological rationality of the nest-site choice behavior of these ants.
ContributorsTalken, Lucas Warren (Author) / Pratt, Stephen (Thesis director) / Sasaki, Takao (Committee member) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
147692-Thumbnail Image.png
Description

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to explore what sets dominant individuals, or gamergates in this case, apart from non-dominant individuals, or non-gamergates. H. saltator ants perform various different behaviors such as dueling, which is a mutually beneficial behavior, dominance biting, which is an aggressive behavior, and policing which is used to bring down those who are dominant. These behaviors can be used to study the importance of initiation and aggression in hierarchy formation. This experiment will explore how aggression through dominance biting, duel initiation, group size, and time period affect the formation of gamergates. To do so, socially unstable colonies of 15, 30, and 60 ants were video recorded for days until gamergates were established. Then, from the recordings, a period of high activity was selected and observed for dueling, duel initiation, dominance biting, dominance bite downs, and policing. The results showed that gamergates tended to perform dominance biting and dominance bite downs far more than non-gamergates during the period of high activity, but not as clearly with duelling and duel initiations. It was inconclusive whether or not the combination of both dueling and dominance biting was what set gamergates apart from non gamergates as different groups showed different results. Gamergates performed visibly more dominance bite downs than non-gamergates, so aggression may be important in setting gamergates apart from non-gamergates. In terms of group size, the smallest group had the least number of gamergates and the least activity, and the medium and large group had a similar number of gamergates and activity.

ContributorsVarghese, Sarah (Author) / Liebig, Juergen (Thesis director) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148329-Thumbnail Image.png
Description

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive responses to non-nestmates. A new method of adding hydrocarbons to ants, the “Snow Globe” method was further optimized and tested on C. floridanus. It involves adding hydrocarbons and a solvent to a vial of water, vortexing it, suspending hydrocarbon droplets throughout the solution, and then dipping a narcotized ant in. It is hoped this method can evenly coat ants in hydrocarbon. Ants were treated with heptacosane (C27), nonacosane (C29), hentriacontane (C31), a mixture of C27/C29/C31, 2-methyltriacontane (2MeC30), S-3-methylhentriacontane (SMeC31), and R-3-methylhentriacontane (RMeC31). These were chosen to see how ants reacted in a nestmate recognition context to methyl-branched hydrocarbons, R and S enantiomers, and to multiple added alkanes. Behavior assays were performed on treated ants, as well as two untreated controls, a foreign ant and a nestmate ant. There were 15 replicates of each condition, using 15 different queenright colonies. The Snow Globe method successfully transfers hydrocarbons, as confirmed by solid phase microextraction (SPME) done on treated ants, and the behavior assay data shows the foreign control, SMeC31, and the mixture of C27/29/31 were all statistically significant in their differences from the native control. The multiple alkane mixture received a significant response while single alkanes did not, which supports the idea that larger variations in hydrocarbon profile are needed for an ant to be perceived as foreign. The response to SMeC31 shows C. floridanus can respond during nestmate recognition to hydrocarbons that are not naturally occurring, and it indicates the nestmate recognition process may simply be responding to any compounds not found in the colony profile and rather than detecting particular foreign compounds.

ContributorsNoss, Serena Marie (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
130367-Thumbnail Image.png
Description
Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS,

Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
ContributorsSchwartz, Rachel (Author) / Harkins, Kelly (Author) / Stone, Anne (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-06-11
130932-Thumbnail Image.png
Description
Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due

Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due to their reliance on interactions that maximize efficiency within their complicated colony structure and array of member roles, eusocial insects serve as an excellent model for animal communication. Among eusocial insects, ants are some of the most heavily researched, with a tremendous amount of literature focused on their cuticular hydrocarbons. Along with serving as a waterproofing agent, cuticular hydrocarbons also play a major role in recognition and communication in these insects. By studying the importance of hydrocarbons in ant social structure, their tremendously specialized olfactory system, and the use of learning assays in its study, parallels between communication in ants and other animals are revealed, demonstrating how ants serve as a relevant model for animal communication as a whole.
ContributorsSpirek, Benton Forest Ensminger (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12