Matching Items (80)
Filtering by

Clear all filters

151750-Thumbnail Image.png
Description
The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation,

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.
ContributorsTassone, Erica (Author) / Verrelli, Brian C (Thesis advisor) / Dowling, Thomas (Committee member) / Cartwright, Reed (Committee member) / Rosenberg, Michael S. (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2013
135560-Thumbnail Image.png
Description
This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.
ContributorsAmrelia, Divya Vikas (Author) / Brafman, David (Thesis director) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136699-Thumbnail Image.png
Description
Colorectal cancer (CRC) is one of the most highly diagnosed cancers in the United States and accounts for 9.5% of all new cancer cases worldwide. With a 50% five-year prognosis, it is the second highest cancerous cause of death in the U.S. CRC tumors express antigens that are capable of

Colorectal cancer (CRC) is one of the most highly diagnosed cancers in the United States and accounts for 9.5% of all new cancer cases worldwide. With a 50% five-year prognosis, it is the second highest cancerous cause of death in the U.S. CRC tumors express antigens that are capable of inducing an immune response. The identification of autoantibodies (AAb) against tumor-associated antigens (TAA) may facilitate personalized tumor treatment in the form of targeted immunotherapy. The objective of this study was to observe the AAb expression raised against a 2000 human gene survey in late-stage colorectal cancer using the Nucleic Acid Programmable Protein Arrays (NAPPA). AAbs from serum samples were collected from 80 patients who died within 24 months of their last blood draw and 80 age and gender matched healthy control were profiled using NAPPA. TAA p53, a well-established protein that is one of the most highly mutated across a variety of cancers, was one of the top candidates based on statistical analysis, which, along with its family proteins p63 and p73 (which showed inverse AAb response profiles) warranted further testing via RAPID ELISA. Statistical analysis from these results revealed an inverse differential relationship between p53 and p63, in which p53 seropositivity was higher in patients than in controls, while the opposite was unexpectedly the case for p63. This study involving the AAb immunoprofiling of advanced stage CRC patients is one of the first to shed light on the high-throughput feasibility of immunoproteomic experiments using protein arrays as well as the identification of immunotherapy targets in a more rapid move towards specialized treatment of advanced CRC.
ContributorsSzeto, Emily (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Demirkan, Gokhan (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-12
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137735-Thumbnail Image.png
Description
The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral

The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral response in T1D patients using our innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA). In this study, each viral gene was individually captured using various PCR based techniques, cloned into a protein expression vector, and assembled as the first version of T1D viral protein array. Humoral responses of IgG, IgA, and IgM were examined. Although each class of immunoglobulin generated a wide-range of reactivity, responses to various viral proteins from different proteins were observed. In summary, we captured most of the T1D related viral genes, established viral protein expression on the protein array, and displayed the serum response on the viral protein array. The successful progress will help to fulfill the long term goal of testing the viral infection hypothesis in T1D development.
ContributorsDavis, Amy Darlene (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Desi, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137471-Thumbnail Image.png
Description
AMPylation is a post-translation modification that has an important role in the survival of many bacterial pathogens by affecting the host cell's molecular signaling. In the course of studying this intercellular manipulation, there has only been modest progression in the identification of the enzymes with AMPylation capabilities (AMPylators) and their

AMPylation is a post-translation modification that has an important role in the survival of many bacterial pathogens by affecting the host cell's molecular signaling. In the course of studying this intercellular manipulation, there has only been modest progression in the identification of the enzymes with AMPylation capabilities (AMPylators) and their respective targets. The reason for these minimal developments is the inability to analyze a large subset of these proteins. Therefore, to increase the efficiency of the identification and characterization of the proteins, Yu et al developed a high-throughput non-radioactive discovery platform using Human Nucleic Acid Programmable Protein Arrays (NAPPA) and a validation platform using bead-based assays. The large-scale unbiased screening of potential substrates for two bacterial AMPylators containing Fic domain, VopS and IbpAFic2, had been performed and dozens of novel substrates were identified and confirmed. With the efficiency of this method, the platform was extended to the identification of novel substrates for a Legionella virulence factor, SidM, containing a different adenylyl transferase domain. The screening was performed using NAPPA arrays comprising of 10,000 human proteins, the active AMPylator SidM, and its inactive D110/112A mutant as a negative control. Many potential substrates of SidM were found, including Rab GTPases and non-GTPase proteins. Several of which have been confirmed with the bead-based AMPylation assays.
ContributorsGraves, Morgan C. (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Yu, Xiaobo (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
130367-Thumbnail Image.png
Description
Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS,

Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
ContributorsSchwartz, Rachel (Author) / Harkins, Kelly (Author) / Stone, Anne (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-06-11