Matching Items (137)
Filtering by

Clear all filters

134426-Thumbnail Image.png
Description
Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and nonchemical delivery of genetic material, but often suffer from cytotoxicity and low efficiency. Novel aminoglycoside antibiotic-derived lipopolymers have been synthesized to mediate transgene delivery to human cells. These polymers are comprised of either paromomycin or apramycin crosslinked with glycerol diglycidylether and derivatized with stearoyl chloride in varying molar ratios. In this work, three previously identified target lipopolymers were screened against a library of human embryonic and induced pluripotent stem cell lines. Cells were transfected with a plasmid encoding green fluorescent protein (GFP) and expression was quantified with flow cytometry 48 hours after transfection. Transfection efficiency was evaluated between three distinct lipopolymers and four lipopolymer:DNA mass ratios. GFP expression was compared to that of cells transfected with commercially available chemical gene delivery reagent controls\u2014JetPEI, Lipofectamine, and Fugene\u2014at their recommended reagent:DNA ratios. Improved transgene expression in stem cell lines allows for improved research methods. Human stem cell-derived neurons that have been genetically manipulated to express phenotypic characteristics of aging can be utilized to model neurodegenerative diseases, elucidating information about these diseases that would be inaccessible in unmanipulated tissue.
ContributorsMehta, Frea (Author) / Brafman, David (Thesis director) / Rege, Kaushal (Committee member) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
ContributorsLoo, Vincent You Wei (Author) / LaBaer, Joshua (Thesis director) / Mehta, Shwetal (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134234-Thumbnail Image.png
Description
CREB3L1 has been previously shown to auto-acetylate itself when prepared from HeLa cell based in vitro protein expression lysates. To circumvent the concerns of the contamination of co-purified human proteins from HeLa lysates, the protein was purified through insect cell transfection in vitro. The objective of this study was to

CREB3L1 has been previously shown to auto-acetylate itself when prepared from HeLa cell based in vitro protein expression lysates. To circumvent the concerns of the contamination of co-purified human proteins from HeLa lysates, the protein was purified through insect cell transfection in vitro. The objective of this study was to assay the auto-acetylation activity of CREB3L1 prepared from insect cells using the baculovirus expression vector system (BEVS). To this end, His-tagged CREB3L1 was affinity purified from Hi5 cells using an IMAC column and used for acetylation assay. Samples were taken different time points and auto-acetylation was by western using antibodies specific to acetylated lysines. Auto-acetylation activity was observed after overnight incubation. Future experiments will focus on the improvement of purification yield and the identification of the substrates and interacting proteins of CREB3L1 to better understand the biological functions of this novel acetyltransferase.
ContributorsSchwab, Anna (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
134621-Thumbnail Image.png
Description
the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy

the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy are individual treatments that were even suggested and used in combination with stem cell therapies. Prolotherapy predates PRP as a chemical irritant therapy originally used to sclerose tissues. Prolotherapy is meant to stimulate platelet derived growth factors release to improve tissue healing response. Prolotherapy shows negligible efficacy improvements over corticosteroids, but may have underlying side effects from being an irritant. PRP is a more modern therapy for improved healing. Speculations state initial use was in an open heart surgery to improve healing post-surgery. PRP is created via centrifugation of patient blood to isolate growth factors by removing serum and other biological components to increase platelet concentration. PRP is comparable to corticosteroid injections in efficacy, but as an autologous application, there are no side effects making it more advantageous. Growth factors induce healing response and reduce inflammation. Growth factors stimulate cell growth, proliferation, differentiation, and stimulate cellular response mechanism such as angiogenesis and mitogenesis. The growth factor stimulation of PRP and prolotherapy both assist stem cell proliferation. Additional research is needed to determine differential capacity to ensure multipotent stem cells regenerate the correct cell type from the increased differential capacity offered by growth factor recruitment. The application of combination therapy for stem cells is unsubstantiated and applications violate FDA ‘minimal manipulation’ guidelines.
ContributorsKrum, Logan (Author) / Frow, Emma (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134524-Thumbnail Image.png
Description
With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even

With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even more important to consider for institutions that rely on their own servers rather than large data centers (cloud storage)1. Compression algorithms aim to reduce the amount of space taken up by large genomic datasets by encoding the most frequently occurring symbols with the shortest bit codewords and by changing the order of the data to make it easier to encode. Depending on the probability distribution of the symbols in the dataset or the structure of the data, choosing the wrong algorithm could result in a compressed file larger than the original or a poorly compressed file that results in a waste of time and space2. To test efficiency among compression algorithms for each file type, 37 open-source compression algorithms were used to compress six types of genomic datasets (FASTA, VCF, BCF, GFF, GTF, and SAM) and evaluated on compression speed, decompression speed, compression ratio, and file size using the benchmark test lzbench. Compressors that outpreformed the popular bioinformatics compressor Gzip (zlib -6) were evaluated against one another by ratio and speed for each file type and across the geometric means of all file types. Compressors that exhibited fast compression and decompression speeds were also evaluated by transmission time through variable speed internet pipes in scenarios where the file was compressed only once or compressed multiple times.
ContributorsHowell, Abigail (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Taylor, Jay (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
135371-Thumbnail Image.png
Description
Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not

Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not template-driven, GT deregulation yields heterogeneous arrays of aberrant intact glycan products, some in undetectable quantities in clinical bio-fluids (e.g., blood plasma). Numerous glycan features (e.g., 6 sialylation, β-1,6-branching, and core fucosylation) stem from approximately 25 glycan “nodes:” unique linkage specific monosaccharides at particular glycan branch points that collectively confer distinguishing features upon glycan products. For each node, changes in normalized abundance (Figure 1) may serve as nearly 1:1 surrogate measure of activity for culpable GTs and may correlate with particular stages of carcinogenesis. Complementary to traditional top down glycomics, the novel bottom-up technique applied herein condenses each glycan node and feature into a single analytical signal, quantified by two GC-MS instruments: GCT (time-of-flight analyzer) and GCMSD (transmission quadrupole analyzers). Bottom-up analysis of stage 3 and 4 breast cancer cases revealed better overall precision for GCMSD yet comparable clinical performance of both GC MS instruments and identified two downregulated glycan nodes as excellent breast cancer biomarker candidates: t-Gal and 4,6-GlcNAc (ROC AUC ≈ 0.80, p < 0.05). Resulting from the activity of multiple GTs, t-Gal had the highest ROC AUC (0.88) and lowest ROC p‑value (0.001) among all analyzed nodes. Representing core-fucosylation, glycan node 4,6-GlcNAc is a nearly 1:1 molecular surrogate for the activity of α-(1,6)-fucosyltransferase—a potential target for cancer therapy. To validate these results, future projects can analyze larger sample sets, find correlations between breast cancer stage and changes in t-Gal and 4,6-GlcNAc levels, gauge the specificity of these nodes for breast cancer and their potential role in other cancer types, and develop clinical tests for reliable breast cancer diagnosis and treatment monitoring based on t-Gal and 4,6-GlcNAc.
ContributorsZaare, Sahba (Author) / Borges, Chad (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135454-Thumbnail Image.png
Description
Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes

Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes undergoing positive selection show faster rates. These may be related to the difference between humans and other primates. Three genes were found to be accelerated were FOXF1, IGFBP5, and ATP2B2, but only the latter one was found in humans and it seems unlikely that it would be related to the differences between mammary gland development at puberty between humans and non-human primates.
ContributorsArroyo, Diana (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Schwartz, Rachel (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134770-Thumbnail Image.png
Description
Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including

Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including high false positive rates, low throughput, and lack of quantification. Moreover, most methods are not compatible for use in a clinical setting. To address these limitations, we have developed a multiplexed, in-solution protein microarray (MISPA) platform with broad applications in proteomics. MISPA can be used to quantitatively profile PPIs and as a robust technology for early detection of cancers. This method utilizes unique DNA barcoding of individual proteins coupled with next generation sequencing to quantitatively assess interactions via barcode enrichment. We have tested the feasibility of this technology in the detection of patient immune responses to oropharyngeal carcinomas and in the discovery of novel PPIs in the B-cell receptor (BCR) pathway. To achieve this goal, 96 human papillomavirus (HPV) antigen genes were cloned into pJFT7-cHalo (99% success) and pJFT7-n3xFlag-Halo (100% success) expression vectors. These libraries were expressed via a cell-free in vitro transcription-translation system with 93% and 96% success, respectively. A small-scale study of patient serum interactions with barcoded HPV16 antigens was performed and a HPV proteome-wide study will follow using additional patient samples. In addition, 15 query proteins were cloned into pJFT7_nGST expression vectors, expressed, and purified with 93% success to probe a library of 100 BCR pathway proteins and detect novel PPIs.
ContributorsRinaldi, Capria Lakshmi (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12