Matching Items (502)
Filtering by

Clear all filters

130422-Thumbnail Image.png
Description
The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB)

The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB) Epon E863 samples and 26 3PB PR520 were tested immediately after curing, together with 26 four-point-bending (4PB) PRI2002 samples stored at 60°C and 90% Rh for 48 weeks. The Weibull parameters were estimated using both linear regression and the moments method. The statistical character of the Weibull model leads to uncertainty in the evaluated parameters, even for a large number of experiments. This study analyzed the ratio of flexural strength to tensile strength in bulk epoxy resin polymers. An analytical method previously developed by the authors to study the relationship between uniaxial tension/compression stress-strain curves and flexural load-deflection response was used to obtain the ratio. The results show that the Weibull model overpredicted the aforementioned ratio in different load arrangements.
Created2014-12-01
130427-Thumbnail Image.png
Description
Identification of early damage in polymer composites is of great importance. We have incorporated cyclobutane-containing cross-linked polymers into an epoxy matrix, studied the effect on thermal and mechanical properties, and, more importantly, demonstrated early damage detection through mechanically induced fluorescence generation. Two cinnamate derivatives, 1,1,1-tris(cinnamoyloxymethyl) ethane (TCE) and poly(vinyl cinnamate)

Identification of early damage in polymer composites is of great importance. We have incorporated cyclobutane-containing cross-linked polymers into an epoxy matrix, studied the effect on thermal and mechanical properties, and, more importantly, demonstrated early damage detection through mechanically induced fluorescence generation. Two cinnamate derivatives, 1,1,1-tris(cinnamoyloxymethyl) ethane (TCE) and poly(vinyl cinnamate) (PVCi), were photoirradiated to produce cyclobutane-containing polymer. The effects on the thermal and mechanical properties with the addition of cyclobutane-containing polymer into epoxy matrix were investigated. The emergence of cracks was detected by fluorescence at a strain level just beyond the yield point of the polymer blends, and the fluorescence intensified with accumulation of strain. Overall, the results show that damage can be detected through fluorescence generation along crack propagation.
Created2014-09-01
130428-Thumbnail Image.png
Description
The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for

The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for the analysis. Increasing penetration of wind-based Type 3 and wind-based Type 4 and PV Solar CCBGs is used in the tests. The participation and interaction of CCBGs and synchronous generators in traditional electromechanical interarea modes is analyzed. Two new types of modes dominated by CCBGs are identified. The characteristics of these new modes are described and compared to electromechanical modes in the frequency domain. An examination of the mechanism of the interaction between the CCBG control states and the synchronous generator control states is presented and validated through dynamic simulations. Actual system and forecast load data are used throughout.
Created2014-09-01
130433-Thumbnail Image.png
Description
The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science

The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science of interfaces and surfaces. Here, a historical view of the development of the conference and a discussion of some of the themes that have been focal points for many years are presented.
Created2013
Description
Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS to be an effective treatment in the effects of PD but the mechanism to validating this phenomenon is poorly understood.

Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS to be an effective treatment in the effects of PD but the mechanism to validating this phenomenon is poorly understood. In this study, an evaluation of the DBS mechanism was analyzed in patients who received both contralateral and ipsilateral stimulation by the DBS electrode in relation to the recording microelectrode. I hypothesize that the data recorded from the neural tissue of the Parkinson’s patients will exhibit increased electromagnetic field (EMF) fall-off as spatial distance increases among the DBS lead and the microelectrode within the subthalamic nucleus (STN) as a result of the interaction between the EMF exuded by DBS and the neural tissue. Results depicted that EMF fall-off values increased with distance, observable upon comparing ipsilateral and contralateral patient data. The resulting analysis supported this phenomenon evidenced by the production of greater peak voltage amplitudes in ipsilateral patient stimulation with respect to time when compared to contralateral patient stimulation. The understanding of EMF strength and the associated trends among this data are vital to the progression and continued development of the DBS field relative to future research.
ContributorsKiraly, Alexis B (Author) / Greger, Bradley (Thesis director) / Muthuswamy, Jitendran (Committee member) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131672-Thumbnail Image.png
Description
The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA cells and MRSA secreted proteins [culture filtrate proteins (CFPs)] as a complementary method of controlling MRSA infections. GPs have been synthesized with variable pore sizes (meso/macro scale) and further modified with stearic acid (SA) to increase surface hydrophobicity. Four GPs (SA-macroGP, macroGP, SA-mesoGP, and mesoGP) were incubated with whole cells and with CFPs to quantify GP adsorption capabilities. Following MRSA culture incubation with GPs, unbound MRSA cells were filtered and plated to determine cell counts. Following CFP incubation with GPs, unbound CFPs were separated via SDS-PAGE, stained with SYPRO Ruby, and analyzed using densitometry. Results indicate that macroGP was the most effective at adsorbing whole MRSA cells. Visual banding patterns and densitometry quantitation indicate that SA-mesoGP was the most effective at adsorbing CFP. Ultimately, GP-based products may be further developed as nonselective or selective adsorbents and integrated into fibrous materials for topical applications.
ContributorsGanser, Collin (Co-author, Co-author) / Haydel, Shelley E. (Thesis director) / Seo, Don (Committee member) / Borges, Chad (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23
133164-Thumbnail Image.png
Description
In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality

In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality of biospecimens in an undesired way and ultimately render the samples unsuitable for molecular analysis. The limited ability to directly reduce discrepancies caused by preanalytical variables gives rise to the need for development and retrospective application of appropriate tests for assessment of biospecimen integrity. Nevertheless, the most standard approaches to assessing biospecimen integrity involve nontrivial procedures. Thus, the need for quality control tools or tests that are readily applicable and can produce results in a straightforward way becomes critical. As one of the major ex vivo biomolecular degradation mechanisms, oxidation that occurs when blood plasma and serum samples are exposed to thawed states during storage and processing is hard to forestall and detect. In an attempt to easily detect and monitor the degree of oxidation, the technique of Fluorescence Resonance Energy Transfer (FRET) was examined to determine whether this concept could be employed to monitor exposure of samples to thawed conditions when controlled by spontaneous oxidative disulfide bonding. The intended mode of usage was envisioned as a fluorescence liquid being stored in a separate compartment but within the same test tube as archived plasma and serum samples. This would allow the assessment of sample integrity by direct visualization of fluorescence under a hand-held black light. The fluorescent dynamic range as well as kinetic control of the reaction were studied. While the addition of Cu(II) proved to facilitate excellent dynamic range with regard to fluorescence quenching, the kinetics of the reaction were too rapid for practical use. Further investigation revealed that the fluorescence quenching mechanism might have actually occurred via Intramolecular Charge Transfer (ICT) rather than FRET mediated by oxidative disulfide bond formation. Introduction of Cu(II) via copper metal slowed fluorescence quenching to the point of practical utility; facilitating demonstration that storing at room temperature, refrigerating or freezing the samples delayed fluorescence quenching to different extents. To establish better kinetic control, future works will focus on establishing controlled, thoroughly understood kinetic release of Cu(II) from copper metal.
ContributorsZhang, Zihan (Author) / Borges, Chad (Thesis director) / Emady, Heather (Committee member) / Williams, Peter (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133261-Thumbnail Image.png
Description
Functional electrical stimulation (FES) is a technology utilized to attempt to restore motor control in patients affected with paralysis, usually through techniques like intraspinal microstimulation (ISMS). FES uses a surface electrode to delivery extremely small to the target muscles that stimulate their movement and improve signaling within the neighboring nerves.

Functional electrical stimulation (FES) is a technology utilized to attempt to restore motor control in patients affected with paralysis, usually through techniques like intraspinal microstimulation (ISMS). FES uses a surface electrode to delivery extremely small to the target muscles that stimulate their movement and improve signaling within the neighboring nerves. This project sought to measure the impedance of an electrode used for FES in order to characterize other neural structures involved in the electrical impulse transmission process, either through the use of components added to the electrode or through the combination of multiple impedance readings. The electrode used in the present study was composed of 15 microelectrodes, which were fully characterized through electrochemical impedance spectroscopy to analyze the impedance profile with change in frequency. The data points obtained from the microelectrodes were then averaged in order to obtain a larger picture of the impedance of the general electrode. As expected, the impedance of the microelectrodes decreased as frequency increased. The average impedance of a microelectrode at a frequency of 1 kHz was found to be 50 k, although high variance in the data requires further testing to be done to verify the validity of the values that were found.
ContributorsMathew, Ethan (Co-author) / Fonseca, Sebastian (Co-author) / Greger, Bradley (Thesis director) / Mirzadeh, Zaman (Committee member) / W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05