Matching Items (486)
Filtering by

Clear all filters

152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151803-Thumbnail Image.png
Description
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives

Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
ContributorsPatel, Harshil Naresh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152144-Thumbnail Image.png
Description
Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent

Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent and voluntary self-regulation, and physiological reactivity among a longitudinal sample of youth who experienced parental divorce. Participants were drawn from a larger randomized controlled trial of a preventive intervention for children of divorce between the ages of 9 and 12. The current sample included 159 young adults (mean age = 25.5 years; 53% male; 94% Caucasian) who participated in six waves of data collection, including a 15-year follow-up study. Participants reported on exposure to negative life events (four times over a 9-month period) during childhood, and mothers rated child temperament. Six years later, youth reported on the use of active and avoidant coping strategies, and 15 years later, they participated in a standardized psychosocial stress task and provided salivary cortisol samples prior to and following the task. Path analyses within a structural equation framework revealed that a multiple mediation model best fit the data. It was found that children with better mother-rated self-regulation (i.e. low impulsivity, low negative emotionality, and high attentional focus) exhibited lower total cortisol output 15 years later. In addition, greater self-regulation in childhood predicted greater use of active coping in adolescence, whereas a greater number of negative life events predicted increased use of avoidant coping in adolescence. Finally, a greater number of negative events in childhood predicted marginally lower total cortisol output, and higher levels of active coping in adolescence were associated with greater total cortisol output in young adulthood. Findings suggest that children of divorce who exhibit better self-regulation evidence lower cortisol output during a standardized psychosocial stress task relative to those who have higher impulsivity, lower attentional focus, and/or higher negative emotionality. The conceptual significance of the current findings, including the lack of evidence for hypothesized relations, methodological issues that arose, and issues in need of future research are discussed.
ContributorsHagan, Melissa (Author) / Luecken, Linda (Thesis advisor) / MacKinnon, David (Committee member) / Wolchik, Sharlene (Committee member) / Doane, Leah (Committee member) / Arizona State University (Publisher)
Created2013
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
ContributorsOlivera-Aguilar, Margarita (Author) / Millsap, Roger E. (Thesis advisor) / Levy, Roy (Committee member) / MacKinnon, David (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2013
150756-Thumbnail Image.png
Description
Energy efficient design and management of data centers has seen considerable interest in the recent years owing to its potential to reduce the overall energy consumption and thereby the costs associated with it. Therefore, it is of utmost importance that new methods for improved physical design of data centers, resource

Energy efficient design and management of data centers has seen considerable interest in the recent years owing to its potential to reduce the overall energy consumption and thereby the costs associated with it. Therefore, it is of utmost importance that new methods for improved physical design of data centers, resource management schemes for efficient workload distribution and sustainable operation for improving the energy efficiency, be developed and tested before implementation on an actual data center. The BlueTool project, provides such a state-of-the-art platform, both software and hardware, to design and analyze energy efficiency of data centers. The software platform, namely GDCSim uses cyber-physical approach to study the physical behavior of the data center in response to the management decisions by taking into account the heat recirculation patterns in the data center room. Such an approach yields best possible energy savings owing to the characterization of cyber-physical interactions and the ability of the resource management to take decisions based on physical behavior of data centers. The GDCSim mainly uses two Computational Fluid Dynamics (CFD) based cyber-physical models namely, Heat Recirculation Matrix (HRM) and Transient Heat Distribution Model (THDM) for thermal predictions based on different management schemes. They are generated using a model generator namely BlueSim. To ensure the accuracy of the thermal predictions using the GDCSim, the models, HRM and THDM and the model generator, BlueSim need to be validated experimentally. For this purpose, the hardware platform of the BlueTool project, namely the BlueCenter, a mini data center, can be used. As a part of this thesis, the HRM and THDM were generated using the BlueSim and experimentally validated using the BlueCenter. An average error of 4.08% was observed for BlueSim, 5.84% for HRM and 4.24% for THDM. Further, a high initial error was observed for transient thermal prediction, which is due to the inability of BlueSim to account for the heat retained by server components.
ContributorsGilbert, Rose Robin (Author) / Gupta, Sandeep K.S (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
150493-Thumbnail Image.png
Description
Research shows that general parenting practices (e.g., support and discipline), influence adolescent substance use. However, socialization theory suggests that parental socialization occurs not only through general parenting practices, but also through parents' attempts to influence specific behaviors and values. A growing literature supports links between substance-specific parenting and adolescent substance

Research shows that general parenting practices (e.g., support and discipline), influence adolescent substance use. However, socialization theory suggests that parental socialization occurs not only through general parenting practices, but also through parents' attempts to influence specific behaviors and values. A growing literature supports links between substance-specific parenting and adolescent substance use. For adolescent alcohol use, there are considerable limitations and gaps within this literature. To address these limitations, the present study examined the factor structure of alcohol-specific parenting, investigated the determinants of alcohol-specific parenting, and explored its association with nondrinking adolescents' attitudes about alcohol use. Using a high-risk sample of nondrinking adolescents and their parents, the current study found three dimensions of alcohol-specific parenting using both adolescent and parent reports, but also found evidence of non-invariance across reporters. Results also revealed complex roles of parental alcohol use disorder (AUD; including recovered and current AUD), family history of AUD, and current drinking as determinants of the three dimensions of anti-alcohol parenting behaviors. Moreover, the current study showed that the effects of these determinants varied by the reporter of the parenting behavior. Finally, the current study found the dimensions of alcohol-specific parenting to be unique and significant predictors of nondrinking adolescents' attitudes about alcohol, over and above general parenting practices, parent AUD, and parent current drinking. Given its demonstrated distinctness from general parenting practices, its link with adolescent alcohol attitudes, and its potential malleability, alcohol-specific parenting may be an important complement to interventions targeting parents of adolescents.
ContributorsHandley, Elizabeth D (Author) / Chassin, Laurie (Thesis advisor) / MacKinnon, David (Committee member) / Crnic, Keith (Committee member) / Sandler, Irwin (Committee member) / Arizona State University (Publisher)
Created2012
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136991-Thumbnail Image.png
Description
The ideal function of an upper limb prosthesis is to replace the human hand and arm, but a gulf in functionality between prostheses and biological arms still exists, in large part due the absence of the sense of touch. Tactile sensing of the human hand comprises a key component of

The ideal function of an upper limb prosthesis is to replace the human hand and arm, but a gulf in functionality between prostheses and biological arms still exists, in large part due the absence of the sense of touch. Tactile sensing of the human hand comprises a key component of a wide variety of interactions with the external environment; visual feedback alone is not always sufficient for the recreation of nuanced tasks. It is hoped that the results of this study can contribute to the advancement of prosthetics with a tactile feedback loop with the ultimate goal of replacing biological function. A three-fingered robot hand equipped with tactile sensing fingertips was used to biomimetically grasp a ball in order haptically explore the environment for a ball-in-hole task. The sensorized fingertips were used to measure the vibration, pressure, and skin deformation experienced by each fingertip. Vibration and pressure sensed by the fingertips were good indicators of changes in discrete phases of the exploratory motion such as contact with the lip of a hole. The most informative tactile cue was the skin deformation of the fingers. Upon encountering the lip of the test surface, the lagging digit experienced compression in the fingertip and radial distal region of the digit. The middle digit experienced decompression of the middle region of the finger and the lagging digit showed compression towards the middle digit and decompression in the distal-ulnar region. Larger holes caused an increase in pressure experienced by the fingertips while changes in stroke speed showed no effect on tactile data. Larger coefficients of friction between the ball and the test surface led to an increase in pressure and skin deformation of the finger. Unlike most tactile sensing studies that focus on tactile stimuli generated by direct contact between a fingertip and the environment, this preliminary study focused on tactile stimuli generated when a grasped object interacts with the environment. Findings from this study could be used to design experiments for functionally similar activities of daily living, such as the haptic search for a keyhole via a grasped key.
ContributorsLoges, Shea Remegio (Author) / Santos, Veronica (Thesis director) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05