Matching Items (95)
Filtering by

Clear all filters

134621-Thumbnail Image.png
Description
the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy

the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy are individual treatments that were even suggested and used in combination with stem cell therapies. Prolotherapy predates PRP as a chemical irritant therapy originally used to sclerose tissues. Prolotherapy is meant to stimulate platelet derived growth factors release to improve tissue healing response. Prolotherapy shows negligible efficacy improvements over corticosteroids, but may have underlying side effects from being an irritant. PRP is a more modern therapy for improved healing. Speculations state initial use was in an open heart surgery to improve healing post-surgery. PRP is created via centrifugation of patient blood to isolate growth factors by removing serum and other biological components to increase platelet concentration. PRP is comparable to corticosteroid injections in efficacy, but as an autologous application, there are no side effects making it more advantageous. Growth factors induce healing response and reduce inflammation. Growth factors stimulate cell growth, proliferation, differentiation, and stimulate cellular response mechanism such as angiogenesis and mitogenesis. The growth factor stimulation of PRP and prolotherapy both assist stem cell proliferation. Additional research is needed to determine differential capacity to ensure multipotent stem cells regenerate the correct cell type from the increased differential capacity offered by growth factor recruitment. The application of combination therapy for stem cells is unsubstantiated and applications violate FDA ‘minimal manipulation’ guidelines.
ContributorsKrum, Logan (Author) / Frow, Emma (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
160701-Thumbnail Image.png
Description

Insects are able to navigate their environments because they can detect hydrocarbons and volatile odors, but it is not clear which one has the fastest reaction when detected, or how much of a response can be produced due to either one. In order to determine which category of odorant is

Insects are able to navigate their environments because they can detect hydrocarbons and volatile odors, but it is not clear which one has the fastest reaction when detected, or how much of a response can be produced due to either one. In order to determine which category of odorant is detected first as well as which one causes the highest response rate, data on electrophysiological responses from ants was analyzed. While the statistical tests can be done to understand and answer the questions raised by the study, there are various hydrocarbons and volatile odors that were not used in the data. Conclusive evidence only applies to the odorants used in the experiments.

ContributorsDarden, Jaelyn (Author) / Gerkin, Richard (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171604-Thumbnail Image.png
Description
Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing

Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing rate or advanced functional intricacy. The gold standard treatment for skin wound healing is suturing. Light-activated tissue sealing is an appealing alternative to sutures as it seals the wound edges minimizing the risk of infection and scarring, especially when utilized along with biodegradable polymeric biomaterials in the wound bed. Silk fibroins can be used as a biodegradable biomaterial that possesses properties supporting cell migration and proliferation in the tissue it interacts with. In addition, histamine treatment is shown to have extensive effects on cellular functions promoting wound healing. Here, the evaluation of Laser-activated Sealants (LASE) consisting of silk fibroin films induced with Indocyanine Green dye in a wound sealed with laser in the presence of Histamine receptor agonists H1R, H2R and H4R take place. The results were evaluated using Trans-epidermal Water Loss (TEWL), histological and analytical techniques where immune cell biomarkers Arginase-1, Ly6G, iNOS, Alpha-SMA, Proliferating Cell Nuclear Antigen (PCNA), and E-Cadherin were used to study the activity of specific cells such as macrophages, neutrophils, and myofibroblasts that aid in wound healing. PBS was used as a control for histamine receptor agonists. It was found that TEWL increased when treated with H1 receptor agonists while decreasing significantly in H2R and H4R-treated wounds. Arginase-1 activity improved, while it displayed an inverse relationship compared to iNOS. H4R agonist escalated Alpha-SMA cells, while others did not have any significant difference. Ly6G activity depleted in all histamine agonists significantly, while PCNA and E-Cadherin failed to show a positive or negative effect.
ContributorsPatel, Dirghau Manishbhai (Author) / Rege, Kaushal (Thesis advisor) / Massia, Stephen (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2022
171472-Thumbnail Image.png
Description
The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime

The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime editing represents great promise in the design of new gene therapies and disease models where editing was previously not possible using current gene editing techniques. Despite advancements in genome modification technologies, parallel enrichment strategies of edited cells remain lagging behind in development. To this end, this project aimed to enhance prime editing using transient reporter for editing enrichment (TREE) technology to develop a method for the rapid generation of clonal isogenic cell lines for disease modeling. TREE uses an engineered BFP variant that upon a C-to-T conversion will convert to GFP after target modification. Using flow cytometry, this BFP-to-GFP conversion assay enables the isolation of edited cell populations via a fluorescent reporter of editing. Prime induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), pairs prime editing with TREE technology to efficiently enrich for prime edited cells. This investigation revealed PINE-TREE as an efficient editing and enrichment method compared to a conventional reporter of transfection (RoT) enrichment strategy. Here, PINE-TREE exhibited a significant increase in editing efficiencies of single nucleotide conversions, small insertions, and small deletions in multiple human cell types. Additionally, PINE-TREE demonstrated improved clonal cell editing efficiency in human induced pluripotent stem cells (hiPSCs). Most notably, PINE-TREE efficiently generated clonal isogenic hiPSCs harboring a mutation in the APOE gene for in vitro modeling of Alzheimer’s Disease. Collectively, results gathered from this study exhibited PINE-TREE as a valuable new tool in genetic engineering to accelerate the generation of clonal isogenic cell lines for applications in developmental biology, disease modeling, and drug screening.
ContributorsKostes, William Warner (Author) / Brafman, David (Thesis advisor) / Jacobs, Bertram (Committee member) / Lapinaite, Audrone (Committee member) / Tian, Xiaojun (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
168457-Thumbnail Image.png
Description
Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of

Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of the adult brain presumably to reduce damage. The subventricular zone (SVZ) niche contains neural progenitor cells (NPCs) that generate astrocytes, oligodendrocyte, and neuroblasts. Following TBI, the injury microenvironment secretes signaling molecules like stromal cell derived factor-1a (SDF-1a). SDF-1a gradients from the injury contribute to the redirection of neuroblasts from the SVZ towards the lesion which may differentiate into neurons and integrate into existing circuitry. This repair mechanism is transient and does not lead to complete recovery of damaged tissue. Further, the mechanism by which SDF-1a gradients reach SVZ cells is not fully understood. To prolong NPC recruitment to the injured brain, exogenous SDF-1a delivery strategies have been employed. Increases in cell recruitment following stroke, spinal cord injury, and TBI have been demonstrated following SDF-1a delivery. Exogenous delivery of SDF-1a is limited by its 28-minute half-life and clearance from the injury microenvironment. Biomaterials-based delivery improves stability of molecules like SDF-1a and offer control of its release. This dissertation investigates SDF-1a delivery strategies for neural regeneration in three ways: 1) elucidating the mechanisms of spatiotemporal SDF-1a signaling across the brain, 2) developing a tunable biomaterials system for SDF-1a delivery to the brain, 3) investigating SDF-1a delivery on SVZ-derived cell migration following TBI. Using in vitro, in vivo, and in silico analyses, autocrine/paracrine signaling was necessary to produce SDF-1a gradients in the brain. Native cell types engaged in autocrine/paracrine signaling. A microfluidics device generated injectable hyaluronic-based microgels that released SDF-1a peptide via enzymatic cleavage. Microgels (±SDF-1a peptide) were injected 7 days post-TBI in a mouse model and evaluated for NPC migration 7 days later using immunohistochemistry. Initial staining suggested complex presence of astrocytes, NPCs, and neuroblasts throughout the frontoparietal cortex. Advancement of chemokine delivery was demonstrated by uncovering endogenous chemokine propagation in the brain, generating new approaches to maximize chemokine-based neural regeneration.
ContributorsHickey, Kassondra (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Holloway, Julianne (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021
168425-Thumbnail Image.png
Description
The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common

The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common genetic abnormality associated with ALS. Typically a nuclear protein, ADAR2 was localized in cytoplasmic accumulations in postmortem tissue from C9orf72 ALS patients. The mislocalization of ADAR2 was confirmed using immunostaining in a C9orf72 mouse model and motor neurons differentiated from C9orf72 patient induced pluripotent stem cells. Notably, the cytoplasmic accumulation of ADAR2 coexisted in neurons with cytoplasmic accumulations of TAR DNA binding protein 43 (TDP-43). Interestingly, ADAR2 overexpression in mammalian cell lines induced nuclear depletion and cytoplasmic accumulation of TDP-43, reflective of the pathology observed in ALS patients. The mislocalization of TDP-43 was dependent on the catalytic activity of ADAR2 and the ability of TDP-43 to bind directly to inosine containing RNA. In addition, TDP-43 nuclear export was significantly elevated in cells with increased RNA editing. Together these results describe a novel cellular mechanism by which alterations in RNA editing drive the nuclear export of TDP-43 leading to its cytoplasmic mislocalization. Considering the contribution of cytoplasmic TDP-43 to the pathogenesis of ALS, these findings represent a novel understanding of how the formation of pathogenic cytoplasmic TDP-43 accumulations may be initiated. Further research exploring this mechanism will provide insights into opportunities for novel therapeutic interventions.
ContributorsMoore, Stephen Philip (Author) / Sattler, Rita (Thesis advisor) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Van Keuren-Jensen, Kendall (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2021
168733-Thumbnail Image.png
Description
This dissertation describes a series of four studies on cognitive aging, working memory, and cognitive flexibility in dogs (Canis lupus familiaris) and their wild relatives. In Chapters 2 and 3, I designed assessments for age-related cognitive deficits in pet dogs which can be deployed rapidly using inexpensive and accessible materials.

This dissertation describes a series of four studies on cognitive aging, working memory, and cognitive flexibility in dogs (Canis lupus familiaris) and their wild relatives. In Chapters 2 and 3, I designed assessments for age-related cognitive deficits in pet dogs which can be deployed rapidly using inexpensive and accessible materials. These novel tests can be easily implemented by owners, veterinarians, and clinicians and therefore, may improve care for elderly dogs by aiding in the diagnosis of dementia. In addition, these widely deployable tests may facilitate the use of dementia in pet dogs as a naturally occurring model of Alzheimer’s Disease in humans.In Chapters 4 and 5, I modified one of these tests to demonstrate for the first time that coyotes (Canis latrans) and wolves (Canis lupus lupus) develop age-related deficits in cognitive flexibility. This was an important first step towards differentiating between the genetic and environmental components of dementia in dogs and in turn, humans. Unexpectedly, I also detected cognitive deficits in young, adult dogs and wolves but not coyotes. These finding add to a recent shift in understanding cognitive development in dogs which may improve cognitive aging tests as well as training, care, and use of working and pet dogs. These findings also suggest that the ecology of coyotes may select for flexibility earlier in development. In Chapter 5, I piloted the use of the same cognitive flexibility test for red and gray foxes so that future studies may test for lifespan changes in the cognition of small-bodied captive canids. More broadly, this paradigm may accommodate physical and behavioral differences between diverse pet and captive animals. In Chapters 4 and 5, I examined which ecological traits drive the evolution of behavioral flexibility and in turn, species resilience. I found that wolves displayed less flexibility than dogs and coyotes suggesting that species which do not rely heavily on unstable resources may be ill-equipped to cope with human habitat modification. Ultimately, this comparative work may help conservation practitioners to identify and protect species that cannot cope with rapid and unnatural environmental change.
ContributorsVan Bourg, Joshua (Author) / Wynne, Clive D (Thesis advisor) / Aktipis, C. Athena (Committee member) / Gilby, Ian C (Committee member) / Young, Julie K (Committee member) / Arizona State University (Publisher)
Created2022