Matching Items (126)
Filtering by

Clear all filters

128715-Thumbnail Image.png
Description

Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live

Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.

Created2015-01-07
128716-Thumbnail Image.png
Description

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the “nested” covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B’ and domains A and A’ respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner.

Created2016-06-06
128679-Thumbnail Image.png
Description

Myxoma virus (MYXV) is Leporipoxvirus that possesses a specific rabbit‐restricted host tropism but exhibits a much broader cellular host range in cultured cells. MYXV is able to efficiently block all aspects of the type I interferon (IFN)‐induced antiviral state in rabbit cells, partially in human cells and very poorly in

Myxoma virus (MYXV) is Leporipoxvirus that possesses a specific rabbit‐restricted host tropism but exhibits a much broader cellular host range in cultured cells. MYXV is able to efficiently block all aspects of the type I interferon (IFN)‐induced antiviral state in rabbit cells, partially in human cells and very poorly in mouse cells. The mechanism(s) of this species‐specific inhibition of type I IFN‐induced antiviral state is not well understood. Here we demonstrate that MYXV encoded protein M029, a truncated relative of the vaccinia virus (VACV) E3 double‐stranded RNA (dsRNA) binding protein that inhibits protein kinase R (PKR), can also antagonize the type I IFN‐induced antiviral state in a highly species‐specific manner. In cells pre‐treated with type I IFN prior to infection, MYXV exploits M029 to overcome the induced antiviral state completely in rabbit cells, partially in human cells, but not at all in mouse cells. However, in cells pre‐infected with MYXV, IFN‐induced signaling is fully inhibited even in the absence of M029 in cells from all three species, suggesting that other MYXV protein(s) apart from M029 block IFN signaling in a speciesindependent manner. We also show that the antiviral state induced in rabbit, human or mouse cells by type I IFN can inhibit M029‐knockout MYXV even when PKR is genetically knocked‐out, suggesting that M029 targets other host proteins for this antiviral state inhibition. Thus, the MYXV dsRNA binding protein M029 not only antagonizes PKR from multiple species but also blocks the type I IFN antiviral state independently of PKR in a highly species‐specific fashion.

Created2017-02-02
128684-Thumbnail Image.png
Description

In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies

In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

ContributorsBrookhouser, Nicholas (Author) / Raman, Sreedevi (Author) / Potts, Chris (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-02-06
135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131715-Thumbnail Image.png
Description
Current culturing methods allow for human neural progenitor cells to be differentiated into neurons for use in diagnostic tools and disease modeling. An issue arises in the relatively low number of cells that can be successfully expanded and differentiated using these current methods, making the progress of research dependent on

Current culturing methods allow for human neural progenitor cells to be differentiated into neurons for use in diagnostic tools and disease modeling. An issue arises in the relatively low number of cells that can be successfully expanded and differentiated using these current methods, making the progress of research dependent on these cultures as a large number of cells are needed to conduct relevant assays. This project focuses on the expansion and differentiation of human neural progenitor cells cultured on microcarriers and within a rotating bioreactor system as a way to increase the total number of cells generated. Additionally, cryopreservation and the characteristics of these neurons post thaw is being investigated to create a way for long term storage, as well as, a method for standardizing cell lines between multiple experiments at different time points. The experiments covered in this study are aimed to compare the characteristics of differentiated human neurons, both demented and non-demented cell lines between pre-cryopreservation, freshly differentiated neurons and post-cryopreservation neurons. The assays conducted include immunofluorescence, calcium imaging, quantitative polymerase chain reaction, flow cytometry and ELISA data looking at Alzheimer’s disease traits. With the data collected within this study, the use of bioreactors, in addition to, cryopreservation of human neurons for long term storage can be better implemented into human neural progenitor cell research. Both of these aspects will increase the output of these cultures and potentially remove the bottleneck currently found within human neural disease modeling.
ContributorsHenson, Tanner Jay (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05