Matching Items (143)
Filtering by

Clear all filters

130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13
130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
ContributorsZhang, Zijia (Author) / Elser, James (Author) / Cease, Arianne (Author) / Zhang, Ximei (Author) / Yu, Qiang (Author) / Han, Xingguo (Author) / Zhang, Guangming (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2014-08-04
130932-Thumbnail Image.png
Description
Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due

Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due to their reliance on interactions that maximize efficiency within their complicated colony structure and array of member roles, eusocial insects serve as an excellent model for animal communication. Among eusocial insects, ants are some of the most heavily researched, with a tremendous amount of literature focused on their cuticular hydrocarbons. Along with serving as a waterproofing agent, cuticular hydrocarbons also play a major role in recognition and communication in these insects. By studying the importance of hydrocarbons in ant social structure, their tremendously specialized olfactory system, and the use of learning assays in its study, parallels between communication in ants and other animals are revealed, demonstrating how ants serve as a relevant model for animal communication as a whole.
ContributorsSpirek, Benton Forest Ensminger (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130426-Thumbnail Image.png
Description
A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate

A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate how tree cover (TC) has affected LP at large spatial scales in rangelands of contrasting social–economic characteristics in the United States and Argentina. Our models indicate that in areas of high productivity, a 1% increase in TC results in a reduction in LP ranging from 0.6 to 1.6 reproductive cows (Rc) per km[superscript 2]. Mean LP in the United States is 27 Rc per km[superscript 2], so a 1% increase in TC results in a 2.5% decrease in mean LP. This effect is large considering that woody-plant cover has been described as increasing at 0.5% to 2% per y. On the contrary, in areas of low productivity, increased TC had a positive effect on LP. Our results also show that ecological factors account for a larger fraction of LP variability in Argentinean than in US rangelands. Differences in the relative importance of ecological versus nonecological drivers of LP in Argentina and the United States suggest that the valuation of ecosystem services between these two rangelands might be different. Current management strategies in Argentina are likely designed to maximize LP for various reasons we are unable to explore in this effort, whereas land managers in the United States may be optimizing multiple ecosystem services, including conservation or recreation, alongside LP.
Created2014-09-02
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
131300-Thumbnail Image.png
Description
The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have

The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have revealed the widespread occurrence of intragenomic (intra-individual) polymorphism in many protists, an understudied phenomenon which contradicts the assumed homogeneity of the 18S throughout an individual genome. This thesis quantifies and analyzes the level of intragenomic and intraspecific 18S sequence variability in three Trichonympha species (T. campanula, T. collaris, T. postcylindrica) from Zootermopsis termites. Single-cell DNA extractions, PCR, cloning, and sequencing were performed to obtain 18S rRNA sequence reads, which were then analyzed to determine levels of sequence divergence among individuals and among species. Intragenomic variability was encountered in all three species. However, excluding singleton mutations, sequence divergence was less than 1% in 53 of the 56 compared individuals. T. collaris exhibited the most substantial intragenomic variability, with sequence divergence ranging from 0 to 3.4%. Further studies with more clones per cell are needed to elucidate the true extent of intragenomic variability in Trichonympha.
ContributorsBobbett, Bradley (Author) / Gile, Gillian (Thesis director) / Liebig, Juergen (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131323-Thumbnail Image.png
Description
Insects are small creatures highly susceptible to water loss. A major factor in the prevention of water loss through an insect’s cuticle are their cuticular hydrocarbons (CHC), a lipid layer consisting mostly of long-chain hydrocarbons. CHCs consist of different molecules called alkanes, alkenes, and methyl branched hydrocarbons which all have

Insects are small creatures highly susceptible to water loss. A major factor in the prevention of water loss through an insect’s cuticle are their cuticular hydrocarbons (CHC), a lipid layer consisting mostly of long-chain hydrocarbons. CHCs consist of different molecules called alkanes, alkenes, and methyl branched hydrocarbons which all have varying levels of hydrophobicity. Ants are a massively abundant family of insects with important roles in the ecosystem that also utilize CHCs. Camponotus floridanus isare athe native ant species of the Florida Keys which areis known to have variable environmental temperature. Being exposed to temperatures as high as 35 °C, these ants are expected to have mechanisms that allow them to adapt to their environment. It was hypothesized that CHCs may change in concentration or composition as a means to combat the changes in cuticular permeability due to the variable temperatures that the ants experience. We therefore used C. floridanus worker ants to learn more about CHC plasticity in insects when exposed to elevated temperatures. We found four CHC componentspeaks that showed a statistically significant increase in concentration when comparing the control to treatment colonies: 3,7 dimethyl C31, an underdetermined methyl branched C31, 3,7,11 trimethyl C31, and an undetermined tetramethylbranched C31. These significant changes in concentration occurred on longer chain hydrocarbons. Under further examination, it was found that there was a strong positive correlation between elution time and the differences in medians of peak area between control and treatment colonies. This shows that there was a shift in the CHC profile resulting in an increased concentration of longer chained methyl-branched hydrocarbons. It also suggests that branched hydrocarbons also play some role in the water proofing mechanism of C. floridanus.
ContributorsOn, Thomas (Co-author) / On, Tyler (Co-author) / Liebig, Juergen (Thesis director) / Harrison, Jon (Committee member) / Murdock, Tyler (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132382-Thumbnail Image.png
Description
When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported

When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported inside the ant back to the nest. The liquid is then regurgitated to fellow nestmates. Ectatomma have been observed using the social bucket method of transport and were considered members of the Ponerine family. However, a new phylogeny created by Borowiec and Rabeling places Ectatomma near to Formecinae and Myrmicinae, both know for practicing trophallaxis. This seems to suggest either Ectatomma is able to utilize trophallaxis as well or that the evolutionary practice of trophallaxis is more plastic than previously believed. The ability of Ectatomma ruidum to utilize trophallaxis was examined in two experiments. The first experiment examined E. ruidum’s ability to practice worker to worker trophallaxis and the second examined E. ruidum’s ability to perform worker to larva trophallaxis. The results of both experiments indicated that E. ruidum cannot utilize trophallaxis but the larva of E. ruidum may be able to regurgitate to the workers. These results in turn seem to suggest that trophallaxis is a bit more plastic than originally thought.
ContributorsCunningham, Cassius Alexander (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132615-Thumbnail Image.png
Description
Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers

Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
ContributorsAnderson, Clayton Edward (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131355-Thumbnail Image.png
Description
Complex animal societies consist of a plethora of interactions between members. To successfully thrive they must be able to recognize members and their kin, and to understand how they do this we need sufficient and reliable methods of testing. Eusocial insects are especially good at recognizing their nestmates, but the

Complex animal societies consist of a plethora of interactions between members. To successfully thrive they must be able to recognize members and their kin, and to understand how they do this we need sufficient and reliable methods of testing. Eusocial insects are especially good at recognizing their nestmates, but the exact mechanism or how well they can discriminate is unknown. Ants achieve nestmate recognition by identifying varying proportions of cuticular hydrocarbons. Previous studies have shown ants can be trained to discriminate between pairs of hydrocarbons. This study aims to compare two methodologies previously shown to demonstrate odor learning to identify which one is the most promising to use for future odor learning experiments. The two methods tested were adapted from Sharma et al. (2015) and Guerrieri and d’Ettorre (2010). The results showed that the Guerrieri method demonstrated learning better and was more reliable and faster than the Sharma method. The Guerrieri method should be used in future experiments regarding odor learning discrimination
ContributorsDavis, Cole (Author) / Liebig, Juergen (Thesis director) / Stephen, Pratt (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05