Matching Items (242)
Filtering by

Clear all filters

133428-Thumbnail Image.png
Description
Optical Communications are at a high point of interest by the space engineering community. After successful projects like the Lunar Laser Communications Demonstration (LLCD), NASA has become interested in augmenting their current Deep Space Network (DSN) with optical communication links. One such link is Deep Space Optical Communications (DSOC) which

Optical Communications are at a high point of interest by the space engineering community. After successful projects like the Lunar Laser Communications Demonstration (LLCD), NASA has become interested in augmenting their current Deep Space Network (DSN) with optical communication links. One such link is Deep Space Optical Communications (DSOC) which will be launching with the Psyche mission. To gain a full understanding of the advantages of this network, this thesis will go over the history and benefits of optical communications both on Earth and in space. This thesis will then go in depth on NASAs DSOC project through an algorithmic implementation of the communications channel.
ContributorsHorton, Paul Alexander (Author) / Mauskopf, Philip (Thesis director) / Sandy, Douglas (Committee member) / Martin, Thomas (Committee member) / Software Engineering (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137862-Thumbnail Image.png
Description
The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in

The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in vivo imaging was determined by the plasmid stability, growth rate, and growth phase dependence on fluorescent intensity. The end goal is to be able to use the asd plasmid in vaccine strains for the purpose of in vivo imaging of the recombinant attenuated Salmonella vaccine (RASV).
ContributorsEudy, L. Adam (Author) / Curtiss, Roy (Thesis director) / Roland, Kenneth (Committee member) / Forbes, Stephen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12