Matching Items (87)
Filtering by

Clear all filters

168275-Thumbnail Image.png
Description
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on

Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on high-performance graph matching solvers, it still remains a challenging task to tackle the matching problem under real-world scenarios with severe graph uncertainty (e.g., noise, outlier, misleading or ambiguous link).In this dissertation, a main focus is to investigate the essence and propose solutions to graph matching with higher reliability under such uncertainty. To this end, the proposed research was conducted taking into account three perspectives related to reliable graph matching: modeling, optimization and learning. For modeling, graph matching is extended from typical quadratic assignment problem to a more generic mathematical model by introducing a specific family of separable function, achieving higher capacity and reliability. In terms of optimization, a novel high gradient-efficient determinant-based regularization technique is proposed in this research, showing high robustness against outliers. Then learning paradigm for graph matching under intrinsic combinatorial characteristics is explored. First, a study is conducted on the way of filling the gap between discrete problem and its continuous approximation under a deep learning framework. Then this dissertation continues to investigate the necessity of more reliable latent topology of graphs for matching, and propose an effective and flexible framework to obtain it. Coherent findings in this dissertation include theoretical study and several novel algorithms, with rich experiments demonstrating the effectiveness.
ContributorsYu, Tianshu (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Yang, Yezhou (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2021
168749-Thumbnail Image.png
Description
Alzheimer's disease (AD) is a neurodegenerative disease that damages the cognitive abilities of a patient. It is critical to diagnose AD early to begin treatment as soon as possible which can be done through biomarkers. One such biomarker is the beta-amyloid (Aβ) peptide which can be quantified using the centiloid

Alzheimer's disease (AD) is a neurodegenerative disease that damages the cognitive abilities of a patient. It is critical to diagnose AD early to begin treatment as soon as possible which can be done through biomarkers. One such biomarker is the beta-amyloid (Aβ) peptide which can be quantified using the centiloid (CL) scale. For identifying the Aβ biomarker, A deep learning model that can model AD progression by predicting the CL value for brain magnetic resonance images (MRIs) is proposed. Brain MRI images can be obtained through the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets, however a single model cannot perform well on both datasets at once. Thus, A regularization-based continuous learning framework to perform domain adaptation on the previous model is also proposed which captures the latent information about the relationship between Aβ and AD progression within both datasets.
ContributorsTrinh, Matthew Brian (Author) / Wang, Yalin (Thesis advisor) / Liang, Jianming (Committee member) / Su, Yi (Committee member) / Arizona State University (Publisher)
Created2022
187656-Thumbnail Image.png
Description
Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has

Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has yet to be developed and commercialized. In this dissertation, a panel of monoclonal antibodies (mAbs) was generated in an attempt to identify circulating antigen in VF-positive patients. Despite utilizing a mixture of antigens, almost all mAbs obtained were against chitinase 1 (CTS1), a protein previously identified as a main component in serodiagnostic reagents. While CTS1 was undoubtedly a dominant seroreactive antigen, it was not successfully detected in circulation in patient samples prompting a shift toward further understanding the importance of CTS1 in antibody-based diagnostic assays. Interestingly, depletion of this antigen from diagnostic antigen preparations resulted in complete loss of patient IgG reactivity by immunodiffusion. This finding encouraged the development of a rapid, 10-minute point-of-care test in lateral flow assay (LFA) format to exclusively detect anti-CTS1 antibodies from human and non-human animal patients with coccidioidal infection. A CTS1 LFA was developed that demonstrated 92.9% sensitivity and 97.7% specificity when compared to current quantitative serologic assays (complement fixation and immunodiffusion). A commercially available LFA that utilizes a proprietary mixture of antigens was shown to be less sensitive (64.3%) and less specific (79.1%). This result provides evidence that a single antigen can be used to detect antibodies consistently and accurately from patients with VF. The LFA presented here shows promise as a helpful tool to rule-in or rule-out a diagnosis of VF such that patients may avoid unnecessary antibacterial treatments, improving healthcare efficiency.
ContributorsGrill, Francisca J (Author) / Lake, Douglas F (Thesis advisor) / Magee, D Mitch (Committee member) / Grys, Thomas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2023
168541-Thumbnail Image.png
Description
The purpose of the overall project is to create a simulated environment similar to Google map and traffic but simplified for education purposes. Students can choose different traffic patterns and program a car to navigate through the traffic dynamically based on the changing traffic. The environment used in the project

The purpose of the overall project is to create a simulated environment similar to Google map and traffic but simplified for education purposes. Students can choose different traffic patterns and program a car to navigate through the traffic dynamically based on the changing traffic. The environment used in the project is ASU VIPLE (Visual IoT/Robotics Programming Language Environment). It is a visual programming environment for Computer Science education. VIPLE supports a number of devices and platforms, including a traffic simulator developed using Unity game engine. This thesis focuses on creating realistic traffic data for the traffic simulator and implementing dynamic routing algorithm in VIPLE. The traffic data is generated from the recorded real traffic data published at Arizona Maricopa County website. Based on the generated traffic data, VIPLE programs are developed to implement the traffic simulation based on dynamic changing traffic data.
ContributorsZhang, Zhemin (Author) / Chen, Yinong (Thesis advisor) / Wang, Yalin (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2022
168788-Thumbnail Image.png
Description
Little is known about how cognitive and brain aging patterns differ in older adults with autism spectrum disorder (ASD). However, recent evidence suggests that individuals with ASD may be at greater risk of pathological aging conditions than their neurotypical (NT) counterparts. A growing body of research indicates that older adults

Little is known about how cognitive and brain aging patterns differ in older adults with autism spectrum disorder (ASD). However, recent evidence suggests that individuals with ASD may be at greater risk of pathological aging conditions than their neurotypical (NT) counterparts. A growing body of research indicates that older adults with ASD may experience accelerated cognitive decline and neurodegeneration as they age, although studies are limited by their cross-sectional design in a population with strong age-cohort effects. Studying aging in ASD and identifying biomarkers to predict atypical aging is important because the population of older individuals with ASD is growing. Understanding the unique challenges faced as autistic adults age is necessary to develop treatments to improve quality of life and preserve independence. In this study, a longitudinal design was used to characterize cognitive and brain aging trajectories in ASD as a function of autistic trait severity. Principal components analysis (PCA) was used to derive a cognitive metric that best explains performance variability on tasks measuring memory ability and executive function. The slope of the integrated persistent feature (SIP) was used to quantify functional connectivity; the SIP is a novel, threshold-free graph theory metric which summarizes the speed of information diffusion in the brain. Longitudinal mixed models were using to predict cognitive and brain aging trajectories (measured via the SIP) as a function of autistic trait severity, sex, and their interaction. The sensitivity of the SIP was also compared with traditional graph theory metrics. It was hypothesized that older adults with ASD would experience accelerated cognitive and brain aging and furthermore, age-related changes in brain network topology would predict age-related changes in cognitive performance. For both cognitive and brain aging, autistic traits and sex interacted to predict trajectories, such that older men with high autistic traits were most at risk for poorer outcomes. In men with autism, variability in SIP scores across time points trended toward predicting cognitive aging trajectories. Findings also suggested that autistic traits are more sensitive to differences in brain aging than diagnostic group and that the SIP is more sensitive to brain aging trajectories than other graph theory metrics. However, further research is required to determine how physiological biomarkers such as the SIP are associated with cognitive outcomes.
ContributorsSullivan, Georgia (Author) / Braden, Blair (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Schaefer, Sydney (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2022
193542-Thumbnail Image.png
Description
As robots become increasingly integrated into the environments, they need to learn how to interact with the objects around them. Many of these objects are articulated with multiple degrees of freedom (DoF). Multi-DoF objects have complex joints that require specific manipulation orders, but existing methods only consider objects with a

As robots become increasingly integrated into the environments, they need to learn how to interact with the objects around them. Many of these objects are articulated with multiple degrees of freedom (DoF). Multi-DoF objects have complex joints that require specific manipulation orders, but existing methods only consider objects with a single joint. To capture the joint structure and manipulation sequence of any object, I introduce the "Object Kinematic State Machines" (OKSMs), a novel representation that models the kinematic constraints and manipulation sequences of multi-DoF objects. I also present Pokenet, a deep neural network architecture that estimates the OKSMs from the sequence of point cloud data of human demonstrations. I conduct experiments on both simulated and real-world datasets to validate my approach. First, I evaluate the modeling of multi-DoF objects on a simulated dataset, comparing against the current state-of-the-art method. I then assess Pokenet's real-world usability on a dataset collected in my lab, comprising 5,500 data points across 4 objects. Results showcase that my method can successfully estimate joint parameters of novel multi-DoF objects with over 25% more accuracy on average than prior methods.
ContributorsGUPTA, ANMOL (Author) / Gopalan, Nakul (Thesis advisor) / Zhang, Yu (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2024
193593-Thumbnail Image.png
Description
In today's data-driven world, privacy is a significant concern. It is crucial to preserve the privacy of sensitive information while visualizing data. This thesis aims to develop new techniques and software tools that support Vega-Lite visualizations while maintaining privacy. Vega-Lite is a visualization grammar based on Wilkinson's grammar of graphics.

In today's data-driven world, privacy is a significant concern. It is crucial to preserve the privacy of sensitive information while visualizing data. This thesis aims to develop new techniques and software tools that support Vega-Lite visualizations while maintaining privacy. Vega-Lite is a visualization grammar based on Wilkinson's grammar of graphics. The project extends Vega-Lite to incorporate privacy algorithms such as k-anonymity, l-diversity, t-closeness, and differential privacy. This is done by using a unique multi-input loop module logic that generates combinations of attributes as a new anonymization method. Differential privacy is implemented by adding controlled noise (Laplace or Exponential) to the sensitive columns in the dataset. The user defines custom rules in the JSON schema, mentioning the privacy methods and the sensitive column. The schema is validated using Another JSON Validation library, and these rules help identify the anonymization techniques to be performed on the dataset before sending it back to the Vega-Lite visualization server. Multiple datasets satisfying the privacy requirements are generated, and their utility scores are provided so that the user can trade-off between privacy and utility on the datasets based on their requirements. The interface developed is user-friendly and intuitive and guides users in using it. It provides appropriate feedback on the privacy-preserving visualizations generated through various utility metrics. This application is helpful for technical or domain experts across multiple domains where privacy is a big concern, such as medical institutions, traffic and urban planning, financial institutions, educational records, and employer-employee relations. This project is novel as it provides a one-stop solution for privacy-preserving visualization. It works on open-source software, Vega-Lite, which several organizations and users use for business and educational purposes.
ContributorsSekar, Manimozhi (Author) / Bryan, Chris (Thesis advisor) / Wang, Yalin (Committee member) / Cao, Zhichao (Committee member) / Arizona State University (Publisher)
Created2024
193355-Thumbnail Image.png
Description
Image denoising, a fundamental task in computer vision, poses significant challenges due to its inherently inverse and ill-posed nature. Despite advancements in traditional methods and supervised learning approaches, particularly in medical imaging such as Medical Resonance Imaging (MRI) scans, the reliance on paired datasets and known noise distributions remains a

Image denoising, a fundamental task in computer vision, poses significant challenges due to its inherently inverse and ill-posed nature. Despite advancements in traditional methods and supervised learning approaches, particularly in medical imaging such as Medical Resonance Imaging (MRI) scans, the reliance on paired datasets and known noise distributions remains a practical hurdle. Recent progress in noise statistical independence theory and diffusion models has revitalized research interest, offering promising avenues for unsupervised denoising. However, existing methods often yield overly smoothed results or introduce hallucinated structures, limiting their clinical applicability. This thesis tackles the core challenge of progressing towards unsupervised denoising of MRI scans. It aims to retain intricate details without smoothing or introducing artificial structures, thus ensuring the production of high-quality MRI images. The thesis makes a three-fold contribution: Firstly, it presents a detailed analysis of traditional techniques, early machine learning algorithms for denoising, and new statistical-based models, with an extensive evaluation study on self-supervised denoising methods highlighting their limitations. Secondly, it conducts an evaluation study on an emerging class of diffusion-based denoising methods, accompanied by additional empirical findings and discussions on their effectiveness and limitations, proposing solutions to enhance their utility. Lastly, it introduces a novel approach, Unsupervised Multi-stage Ensemble Deep Learning with diffusion models for denoising MRI scans (MEDL). Leveraging diffusion models, this approach operates independently of signal or noise priors and incorporates weighted rescaling of multi-stage reconstructions to balance over-smoothing and hallucination tendencies. Evaluation using benchmark datasets demonstrates an average gain of 1dB and 2% in PSNR and SSIM metrics, respectively, over existing approaches.
ContributorsVora, Sahil (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Zhou, Yuxiang (Committee member) / Arizona State University (Publisher)
Created2024
156682-Thumbnail Image.png
Description
Unsupervised learning of time series data, also known as temporal clustering, is a challenging problem in machine learning. This thesis presents a novel algorithm, Deep Temporal Clustering (DTC), to naturally integrate dimensionality reduction and temporal clustering into a single end-to-end learning framework, fully unsupervised. The algorithm utilizes an autoencoder for

Unsupervised learning of time series data, also known as temporal clustering, is a challenging problem in machine learning. This thesis presents a novel algorithm, Deep Temporal Clustering (DTC), to naturally integrate dimensionality reduction and temporal clustering into a single end-to-end learning framework, fully unsupervised. The algorithm utilizes an autoencoder for temporal dimensionality reduction and a novel temporal clustering layer for cluster assignment. Then it jointly optimizes the clustering objective and the dimensionality reduction objective. Based on requirement and application, the temporal clustering layer can be customized with any temporal similarity metric. Several similarity metrics and state-of-the-art algorithms are considered and compared. To gain insight into temporal features that the network has learned for its clustering, a visualization method is applied that generates a region of interest heatmap for the time series. The viability of the algorithm is demonstrated using time series data from diverse domains, ranging from earthquakes to spacecraft sensor data. In each case, the proposed algorithm outperforms traditional methods. The superior performance is attributed to the fully integrated temporal dimensionality reduction and clustering criterion.
ContributorsMadiraju, NaveenSai (Author) / Liang, Jianming (Thesis advisor) / Wang, Yalin (Thesis advisor) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2018
157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019